

On Masters and Slaves: Solvent control of protein motions and function

Wolfgang Doster Technische Universität München Physik Department and FRM 2

Topics:

- 1) Properties of "Biological Water"
- 2) Solvent control of protein function, "slaving"
- 3) Transitions: glass-liquid (GT), liquid-liquid (FST), protein dynamical transition (PDT)
 Mothods:

Methods:

Neutron Scattering and Flash Photolysis Myoglobin

"on cavities and cages"

Literature: http://www.e13.physik.tu-muenchen.de/Doster

Does water stabilize protein structures? reentrant phase diagram of cytochrome C

P-T phase diagram of cytochrom C

Folded (N) \leftrightarrow Unfolded (D)

Entropy of unfolding: ΔS_{DN}

Unfolding volume: ΔV_{DN}

Phase boundary: CC equation

 $dP/dT = \Delta S_{DN} (T, P) / \Delta V_{DN} (T, P)$

 $\Delta S_{DN}, \Delta V_{DN}$ depend on temperature and pressure due to hydration water

Doster and Friedrich in: Protein Folding Handbook Part 1 (Wiley- VCH 2005)

Structure of hydration water: D₂O (myglobin) coherent neutron scattering ISIS (SANDALS) with D. Bowron

cage size: d $\approx 2\pi$ / Q_{max} ≈ 0.3 nm

..structure of simple liquids..is largely determined by geometric factors, associated with the packing of the molecular hard cores (Hansen,McDonald)

First order: HW structure close to bulk water peak of S(Q) at Q = $2 A^{-1}$ Second order: Distortions of tetrahedral stucture

dynamics of hydration water incoherent neutron scattering H₂O

2) broad (b): width independent of Q

Relaxation rates of hydration water versus degree of hydration

- 2 time scales:
- 1) fast local in cage β_f (b) 5-10 ps independent of Q
- 2) Slow process α (n) 50-100 ps varies with Q, diffusion

cage effect: α -relaxation

Doster et al. PRL (2010)

Time-resolved mean square displacements

 $I_s(Q,t) = 1 - 1/6 \ Q^2 \langle \ r^2(t) \ \rangle \ + \ 1/120 \ Q^4 \ \langle \ r^4(t) \ \rangle - \ldots .$

Moment Expansion of the Scattering Function: Placzek expansion

<r²(t)>/3

protein-water displacements versus temperature

Protein-Water Dynamics from femtosecond fluoresence spectroscopy

1) Two water time scales: (Zhang et al. JACS (2009)131,10677

 τ_{β} : 5-10 ps

Exchange with bulk

 $\tau_{\alpha} \cong \tau_{\text{prot}} \ 20\text{--}100 \text{ ps}$

fast local reorganisation of water H-bond network, reorientation, libration, site specific Lateral structural relaxation of hydration shell coupled to protein fluctuations, same time scale

2) Third time scale: Slow protein motions vary with surface viscosity: 1000 ps

The protein-solvent interface solid-liquid

Dynamic Neutron Scattering and Spectroscopy

Collective Dynamics Far Infrared: 1-100 cm⁻¹ Terahertz

Bulk- Hydration Water: Terahertz vibrations

Dynamic Susceptibility Spectrum of Bulk and Hydration Water

Short time diffusive dynamics is dominated by hydrogen bond fluctuations : β_f-process

JNIVERSITAT

ΔE.

Water librational mode (H-bond braking) determines fast diffusive dynamics of protein-water system Doster BBA 2010 , Tarek, Tobias, PRL 2002

Protein Low frequency vibrations: Boson peak

Doster et al. Nature (1989), Diehl et al. Biophys.J 73,(1997), Tobias, Tarek PRL 2002)

Boson- Peak is not secondary structure sensitive

but depends strongly on environment

Does hydration water have a protein boson peak?

Paciaroni et al. PRL 2008 Settles, Doster, Faraday Disc1996, BBA 2010 Phys. Rev E 1999 H₂O/D₂O hydrated myoglobin Maltose binding protein 0.4 1.6 MBP(D)-H_O Mb-H₂O / Mb-D₂O O MBP(H)-D_O * 0.26 T/K = 3200.3 △ Hydr. Water $S(\theta, \hbar\omega)_{Mb-H_20}/S(\theta, \hbar\omega)_{Mb-D_20}$ 300 S(20, E) (arb. units) 1.4 270 **LIBRATION** 250 0.2 220 1.2 180 0.1 1.0 0.0 0 2 6 8 10 12 14 E (meV) peak at 3 meV TA 0.8 (2) 100 10 1 (a)**(b)** TA -- (3) Boson $\rightarrow (4)$ ħω [meV] χ["](k=2Å⁻¹,E) S(k=2Å⁻¹,E) - + Fix. protein peak No Boson peak Tarek, Tobias 10 0 2 10 12 1 6 Simulation PRL 2002 E[meV] E[meV]

Does hydration water have a protein Boson peak?

Neutron Scattering spectra of hydration water with perdeuterated proteins H2O-D20 hydrated

MÜNCHEN

No evidence of Boson peak in hydration water spectrum

Protein function: CO- binding to myoglobin, elementary steps, flash photolyis

Relaxation rates and viscosity of glass forming solvents

Kleinert Biochem.1998, Doster BBA 2005

UNIVERSITÄT M Ü N C H E N

Kinetics of CO- binding to myoglobin Flash photolysis experiments different solvents, hydration

log (t / sec)

internal displacements independent of viscosity or degree of hydration

ligand escape S decreases with viscosity

Viscosity Effect on Rate Constants (Kleinert et al, Biochem. 1998)

Type S: coupled to protein surface viscosity, hydration

Heme dynamics and functional motions

Solvent- dependence, function below transition?

Mössbauer effect: heme iron displacements 75 % glycerol-water 80 % sucrose-water

flash photolysis: ligand escape fraction N_{out}

common solvent viscosity effect on heme motions and ligand motions

Lichtenegger et al. Biophys.J. 76 (1999) 414 Kleinert et al. Biochem. (1998) 37:717, Srajer et al. Biochem. (2001)

Flash Photolysis at high pressure: Mb-CO

interior sites

1) internal rates independent of P vacancies stay empty up to $D \leftarrow >N$

2) recombination rate depends on rate of internal water replacement

Microscopic rates

 $k(P) = k(0) \exp(-\Delta V^* P / RT)$

 $S \Leftrightarrow B \Leftrightarrow C_i$

Solvent primary

2 classes of functional motions I and S 2 classes of protein motions ??

Doster, Settles BBA 2005

myoglobin in various solvents

Proton Mean Square Displacements

quasielastic broadening:

myoglobin dry, glassy, hydrated

PDT: protein dynamical transition

Two types of structural transitions:

internal and solvent-coupled motions

$$\left< \Delta x^2 \right>_{\text{tot}} = \left< \Delta x^2 \right>_{\text{vib}} + \left< \Delta x^2 \right>_{\text{rot}} + \left< \Delta x^2 \right>_{\text{trans}}$$

hydrated/solvated protein spectra

Gaspar et al. Eur.Biophys.J. (2008)

"Benshmark" proteins with different structure and environment

marked differences only in solution:

elastic scattering depends on structural rigidity

largest differences due to protein global diffusion

protein dynamics and function: 2 major components I, S

Doster, Settles BBA 2005 Doster in Dynamics of Soft Matter 2011 Smith, Sokolov PRL 2012

1) rotation, type I: independent of solvent

non-Gaussian, discontinuous,

torsional jumps of side chains, methyl groups and main chain little dependent on environment internal ligand migration

2) local translation, type S: coupled to viscosity

Gaussian, water-assisted, small scale continuous translational displacements coupled to α -(β) relaxation of hydration water and the entry and exit of protein ligands

Temperature Dependence Dynamical Transitions: mobile → rigid (GT, PC, FST, PDT) at nearly constant structure

$$D_{s} =_{\lim \omega \to 0, Q \to 0} \left(\frac{\omega}{Q}\right)^{2} S_{s}(Q, \omega)$$

FST: fragile strong transition due to structural change Static transition!

 $D(T, P, \omega ..) \rightarrow 0$ Diffusion vanishes

- Percolation Transition Trapping-detrapping, energy landscape continuous
- Liquid-glass transition discontinuous, ergodic-nonergodic specific heat, thermal expansion
- 3) protein dynamical transition:GT at shorter time scales

External parameters: T, P, ω

Glass Transition of Protein Hydration Water was defined originally by IR O-D spectroscopy

TECHNISCHE UNIVERSITÄT MÜNCHEN

1.0

(1,t) (1,t) (0,t)

0

ideal liquid to glass transition: cage becomes a trap at a critical density mode coupling theory of hard sphere liquid (Götze et al.)

relax

glass: $\varphi = 0.52$

 α relax.

 10^{6}

viscous

liauid $\phi = 0.51$

correlations persist, nonequilibrium

 10^{4}

 10^{2}

f_C(Q) glass form factor

 $f_{\rm C} = 0$ liquid state

Time (ps)

vibration

simple

liquid

 $\omega = 0.46$

 10^{0}

 10^{-2}

MÜNCHEN

Definition of dynamic transition temperature T_d $I(Q,\tau_{res},\tau_c(T),\beta) = I_{el}(T)$: Effect of distribution Doster JNCSol. 2011

 $I(Q,t) = F(Q) \exp[-(\tau_{res}/\tau_c(T))^{\beta}] \quad \tau_{res} / \tau_c(T_d) = 1 \quad \text{independent of } \beta$

UNCHEN The elastic scattering intensity scaling relation

 $I_{el}(Q) = S_{el}(Q, \omega = 0, \Delta \omega) = \int \operatorname{Re} s(Q, \omega', \Delta \omega) \cdot S(Q, \omega') d\omega'$ $\approx \exp(- <\Delta x^2 > Q^2)$ Gaussian approximation in low Q limit $I_{el}^{N} = EISF(Q) + QEISF(Q)F(\tau_{res} / \tau_{c}(T))$ F(x) scaling function **CPC** hydration 1,0 $\tau_{c} = \tau_{0} e^{\Delta H^{*}/RT}$ $\Delta H^{*} = RT_{d} \ln \left(\frac{\tau_{res}}{\tau_{0}}\right) \xrightarrow{\stackrel{(a)}{=} 0.6}{\underbrace{\bigcirc}{}_{-\overline{\bullet}} 0.6}$ 0.1 ns water $\beta = 1$ $\Delta H^* = 17 \text{ kJ/mol}$ Ton $\tau_0 = 10^{-13} \text{ s}$ $\beta = 0.5$ τ_{res} = 2 ns 0.1 ns 0,4 $\beta = 0.5.1$ $\beta = 0.5$ different β values $\frac{d}{dT}I_{el}^{NLL}(T_d) = \frac{1}{2}\frac{\Delta H^*}{RT^2}$ 0.2 100 150 200 250 300 350 T/°K

Effect of finite resolution

Doster, J. Noncryst. Sol. (2011) and Doster et al. JCP 2013 submitted

Lamb Mössbauer factor of pure glycerol

$$I_{el}^{N}(\tau_{res},\tau_{c}) = \frac{\tau_{c} + \tau_{res}^{-1}}{(\tau_{c} + \tau_{res}^{-1})^{2}} = \frac{\tau_{res}}{1 + \tau_{res} / \tau_{c}(T)}$$

$$Q = 7.3 A^{-1}$$

Elastic intensity transition: GT at 140 ns

elastic intensity: Lorentz-Lorentz model

⁵⁷Fe in 100 % glyercol τ_{res} = 140 ns

α, β relaxation data taken from:
Cappacioli et al. J.Phys. Chem B 2012
Mössbauer:
Champeney, Woodham
J. Phys. B. 1968

LMF transition due to α -relaxation not beta in contrast to Cappacioli et al.

Protein Dynamical Transition at room temperature

 $I_{el}(Q, \tau_{res}) \approx I(\tau_{res}, Q)$ intermediate scattering function

elastic intensity: change resolution instead of temperature! Time of flight IN5 myoglobin, 300° K, Q = 1,0 hydrated myoglobin 0,5 A⁻¹ 0.85 $0.4 \, \text{g/g}$ 1,3 A⁻¹ 25 mg protein!! $\text{lel}^{\mathsf{N}}\left(\mathsf{Q},\tau_{\text{res}}\right)$ 2,0 A⁻¹ 0,8 1.35 methyl translation rotation water coupled 0,6 methyl process $\tau_2 = 10$ (2) ps 0,4 $\tau_2 = 350 (50) \text{ ps}$ 100 10 1000 τ_{res} [ps] Elastic Resolution Spectroscopy: Doster, Diehl, Petry Ferrand Physica B (2001) 301, 65 and Chem. Phys. 292 (2003) 487

TECHNISCHE UNIVERSITÄT MÜNCHEN

Protein-Dynamical Transition: α -relaxation of the protein + hydration water system

Doster et al. PRL 2010

onset effect of resolution Doster (2008) EBJ

Strong Protein-Solvent Coupling in Glycerol the α / β controversy

lysozyme/glycerol 0.12 10-6 1) Perfect agreement of α protein-solvent displacements . **τ**_{KWW} 0.10 € 10⁻⁹ ۲ ο τ 276 K Δ τ_β 2) Insert show Arrhenius plot 0.08 -**10**⁻¹² of dielectric relaxation of 5 $< u^2 >_{tot} (Å^2)$ 1000 / T (K⁻¹) glycerol with α and GJ β 0.06 process 210 K 0.04 -¥ lysozyme-glycerol 50-50 glycerol 0.02 A COLOR WEIGHT 0.00 -250 300 50 100 150 200 350 0 T (K)

Capaccioli, Ngai, Ancherbak Paciaroni, JPCB 2012

Lysozyme in glycerol: Solvent Slaving of Protein Motions?

The displacements depend on the Q-range: Cappacioli et al.; only high Q.

Result: low Q displacements different from high Q, beta processes emerge only at low Q, ignored by Cappacioli et al.

"Biomolecules feel and respond only to those water molecules that are in close contact and not to bulk water" (N. Dencher et al. 1998 Les Houches)

1) Hydration water shows two relaxation processes: fast local reorientation (beta) and slow long range diffusion (alpha)

2) Two classes of protein functional motions exist:

- (S) Surface viscosity coupled protein displacements
- (I) truely internal (solvent decoupled) displacements pressure cannot push water into protein voids
- 3) dynamical transition is induced by alpha-relaxation of the solvent, role of beta-relaxation unclear

4) Protein-water vibrations: hydration water does not exhibit a protein Boson peak, hindered rotation of water couples to low frequency diffusive motion: bond splitting

Collaborators

M. Settles M. Diehl F. Post Th. Kleinert X. Cai	Physik E 13 TU-München
A. Ogrodnik	Physikalische Chemie TUM
J. Friedrich	Physik TU München
S. Busch J. Wuttke M.S. Appayou	JNC Garching FRM II
A. Gaspar	European Patent Office
H. Nakagawa	JAEA, Tokai
also thanks to Wolfgang Götze for	
support and discussion	