
 

 

Comment by Wolfgang Doster on 

 “a wave mechanical model of incoherent quasielastic 

scattering in complex systems” 

By Hans Frauenfelder et al.  PNAS vol 111 , p 12764 (2014) 

Most remarkable  to me is that this model is supported by three open reviewers with neutron 

scattering expertise, Gerald Kneller, E. Mamontov and Roger Pynn (above). However there 

was no reviewer with Mössbauer expertise, which is the essential part. Frauenfelder can get 

published in PNAS without passing a decent review, he just names his friends. 

Sept. 10, 2018 

1) The “wave mechanical model” is not new  

It is often used to explain conventional quasi-elastic neutron scattering to students. In 

2003, we wrote in Chem. Phys. 282, 487: “TOF-elastic resolution spectroscopy, time 

domain analysis of weakly scattering (biological) samples”: 

 

 

which is remarkably close to  the Frauenfelder version. 

2) Whats wrong with scattering theory? 

The  well known specialist of neutron scattering theory and instrumentation, Joachim Wuttke, 

wrote a counter-letter, “No case against scattering theory” (PNAS vol.114, E8318, 2017):  “In 

a series of papers , Frauenfelder et al. (see also comment                                                                                                                                           

in 2013) propose a radical reinterpretation of incoherent neutron scattering (and the 

Mössbauer effect) by complex systems, proteins, hydration water, drawing into doubt the 

“currently” accepted model which was highly successful  for > 50 years..” Wuttke concludes 

“ that there is nothing wrong with the accepted Van Hove space time scattering  theory”. 



 In contrast Frauenfelder writes:   “At present the QENS spectra are separated into a narrow                                                                                                                                                                                

elastic peak and a broad quasi-elastic  band as in fig. 1A. As                                               

sketched  in fig. 1B the broad band is taken to consist of  Lorentzians of different width 

centered at E = 0, the sum is shown in red.                                                                                                                                                                                                                            

The  broadening it attributed to the spatial motion  of the target atoms, diffusion, jumps, 

conformational changes.This is called the “SMM model”. The “radiacally” different “energy 

landscape model ELM is illustrated in fig. 1 C: There is no separate  elastic line, pinned to 

the center. The entire spectrum is  composed of a very large 

number of spectral lines with twice the natural line width. 

Such a spectrum is called inhomogeneous.  The lines are 

shifted from the center by transitions among the 

conformational substates of  the ELM. Different proteins 

experience different energy shifts.”. 

which gives the series of shifted sharp lines of fig. 1C  with 

the envelope of the vibrational density  (Q, i) centered also 

at  = 0 

 S(Q,, i ) = (Q, i) ( -i) ,  Ei  = hi 

In a recent paper in PNAS (2018) G. Kneller has developed a 

Franck Condon picture of this model. 

This is a quantum mechanical model, which does not apply 

however  to overdamped  diffusion within a free-energy 

landscape. For  such a classical situation the spectral lines are 

symmetrically centered around  = 0, after correction for 

detailed balance, the linewidth is dominated by relaxation 

times and not by heterogeneity. 

                 

                                               

Spectral heterogeneity for overdamped relaxation processes  

1) The heterogeneous relaxation model of the intermediate scattering function: 

I(Q,t) = Ai( Q) exp(-t /i) + A.  

An elastic line emerges only if A> 0. The resulting spectrum will be a heterogeneous 

superposition of Lorentzian lines with width I = 1/i, centered at  = 0, fully 

compatible with SMM, fig. 1 a and b 

2) Homogeneous nonexponential relaxation (fig. 1 b): 

I(Q,t) = A(Q) exp(-t/KWW)
β 

The Kohlrausch function accounts for relaxtion in complex systems, such as liquids. 

The homogeneous spectrum will be centered at  = 0. 1> β > 0 is the inhomogeneity 

coefficient. 

 



What is the main difference between SMM and ELM heterogeneity? 

The SMM treats  essentially overdamped relaxation or diffusion processes. Thus  all spectral 

components are  centered at  = 0, as a simple consequence of the Fourier transform of 

exponential functions. The width of the spectrum reflects the average relaxation time. There is 

no necessity  of an “elastic line” in SMM as postulated here: Liquids do not exhibit an elastic 

line, since there are no spatial constraints at long times. For short times or low resolution, a 

partial localisation of particles may persist, depending on the relaxation time distribution, 

which leads to a resolution dependent elastic line. The existence of an elastic line allows to 

decide whether the system is in a liquid or a glassy state. 

The ELM postulates underdamped vibrational transitions with a density of states (i), which 

is centered at  = 0. The individual components are displaced from  = 0 by i = Ei/h,  

which is the energy change due a move in the landscape. The width of the spectral 

components is very narrow due to vibrational dephasing (T2), unrelated to a relaxtion time 

(T1). The width of the combined spectrum does not reflect an average relaxation time. 

Instead it is the width of the frequency distribution (i). 

With NMR spectra one has also two components: The width  can be inhomogeneously 

broadened due to dephasing of spins (T2), or it can be homogeneously broadened due 

to  longitudinal relaxation  T1. The neutron and Mössbauer case are quite different 

from NMR. With incoherent neutron scattering, the neutron spins are dephased by  the 

random spin orientations of the scattering protons.  In practice it is very easy to decide 

with neutrons, whether the spectrum is motionally broadened according to an average 

relaxation time or whether it is broadened by multiple energetic transition as for a 

quantum harmonic oscillator. Structural relaxation in proteins is not well characterized 

by quantum transitions. 

Lichtenegger et al wrote in  their  Mössbauer study on “heme solvent coupling” (Biophys. J. 

76, 414, 1999): The ME in proteins has the two characteristic features of a rapid decrease of 

the Debye-Waller factor above a characteristic temperature TC (200 K) and the parallel 

appearance of quasi-elastic line-broadening in the energy range of a few neV (Parak and 

Formanek, 1971; Keller and Debrunner, 1980; Parak et al., 1981, 1982; Nowik et al., 1983). 

These results were interpreted in terms of protein-specific structural jumps and diffusion 

between conformational substates (Knapp et al. 1982; Nadler and Schulten, 1984). 

The common ground of QENS and Mössbauer spectroscopy 

a)  The ME and NS approach to  molecular dynamics: 

 ME and NS record density fluctuation around their reporter groups, which can be 

understood on the same basis:  The spatial interference of the scattered (absorbed) waves 

generates the signal: More precisely, it is  the loss of coherence in space and time giving 

rise to a dynamical structure factor S(Q,) as a function of momentum and energy 

exchange. It is reflecting exclusively the properties of the sample and is defined by the 

Fourier transform of the phase (factor) correlation function: 



                            S(Q,) = FTij<e
iQr
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>R(t/res)                (equ. 1) 

 Incoherent scattering implies  that waves scattered from different nuclei, i, j do not interfere. 

The signal with incoherent scattering  is generated by the self- coherence  of ii waves 

scattered from the same center  i versus time and space. The modulation of the signal 

originates from motions of the nuclei  ri(t) during the time res , defined by the coherence 

length and the velocity (energy) of the neutron, see above. R(t/res) denotes the resolution 

function. The momentum parameter Q sets the spatial scale 1/Q, over  which the 

displacements are probed. The elastic structure factor S(Q,0), more precisely its Fourier 

transform, the density correlation function  G(r, t = res)  reflects the distribution of 

displacements (Doster/Settles BBA 2005, Doster et al. JCP 2013, 139,45105).   

Even in the simplest case of a single exponential relaxation, identical to all sites, a  

homogeneous broad spectrum results. The line width  = 1/, as illustrated in fig. 1 A above.  

The existence of site heterogeneity in the parameters of a single process or the involvement of 

several processes for each site would lead to non-exponential relaxation, or a superposition of 

Lorentzian spectra as suggested in fig.1 B. There could be a distribution of amplitudes and 

correlation times. There is enough sensitivity to heterogeneity build into the method. By 

contrast  the model of Fig. 1C would imply that the local phase-correlation function of an 

overdamped relaxation process has oscillatory components. “Chemical shifts” occur only with 

resonance absorption methods, where well defined energy levels are modulated as with ME, 

NMR or optical spectroscopy but not with NS. The ELM model shares some features with  

“single molecule optical spectroscopy”: With a variable narrow laser line  one can resolve the 

inhomogeneous broadening of a macroscopically averaged absorption band into life-time 

broadened narrow lines of individual molecules. By selecting a single molecule, one can even  

record the jumps between different conformational states. With NS and ME, this kind of 

information cannot be extracted. 

 The elastic line at  = 0  (NS, ME) reflects the spatial localization of the scattering centers  at 

long times: The long time spatial memory does not decay to zero in contrast to diffusion in 

liquids. The FT of a constant  leads to a -line at  = 0:  S(Q, 0) = EISF(Q)(Q), the EISF(Q) 

denotes the normalized elastic structure factor: 
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 For Q  0, one  obtains EISF(Q) ≡ 1 quite generally for reasons of particle conservation. 

Therefore the correlation function is normalized at all times. The observed decrease in elastic 

intensity at low Q with increasing temperature, which plays such a big role in Frauenfelder et 

al. PNAS 2017, is thus not compatible with conventional single scattering theory. But it is 

well explained by multiple scattering. In fact we use the extrapolated zero Q value of 

S(Q0,0) routinely  to correct our elastic and quasi-elastic scattering data  from multiple 

scattering (Doster, Settles BBA 2005). The details will be discussed in the next comment (HF 

2017). 



A suitable starting point for the evaluation of Mössbauer spectra is the self part of the 

intermediate scattering function by (Knapp et al. J. Chem. Phys. 78,4701, 1983) similar to 

incoherent neutron scattering, equ. 1. The ME absorption cross-section is then given: 

                        (k,)  FT j <e
ikr

j
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 e
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> R(t/Mö               equ. (2) 

where k  is the wave vector the gamma radiation and h = E- Ea with Ea being the resonance 

energy of the nuclear transition, Mö  141 ns is the nuclear life time (Chong et al. Eur. 

Biophys. J. (2001) 30,319). The resolution R(t/ME) is an exponential with a resulting 

Lorentzian half with of  1/ME : If the phase correlation function in equ.(2)  has an exponential 

decay due to spatial motion of the iron with time c , the combined half width of the 

Lorentzian (k,)  will be   = 1/ME + 1/ c . This is standard ME theory. If there is a finite  

long time value of the intermediate scattering function, EISFME(k) as in solids, there will be 

an elastic line in addition to the Lorentzian broad line as with NS. 

                        (k,) = EISFME(k0)  (ω)  + (1 –EISFME(k0))  (ω, )    equ. (3) 

(ω, ) is a Lorentzian line. So the decomposition into elastic and quasi-elastic components is 

unavoidable if these methods record the decay of the phase correlation function. The 

similarity between equ. (1) and equs. (2,3) is the main reason, why some experimental results 

look so similar. The quasi-elastic lines are homogeneous for diffusive processes with both 

methods in contrast to what is proposed with ELM. Static broadening due to a distributed Fe 

environment is often observed at low temperatures (Lichtenegger, 1999).  

In conclusion: That the Energy Landscape model explains Mössbauer and Neutron data 

sets together is a misconception. Both methods show different things . Not a single 

evidence of heterogeneous Mössbauer or quasi-elastic neutron scattering spectra was 

presented. The NS linewidth is not 4,7 neV but ranges around 1 eV for back-scattering 

spectrometers. 


