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Brownian Oscillator Analysis of Molecular
Motions in Biomolecules

W. Doster

20.1 Introduction

Dynamic analysis of biomolecules often works by the principle of difference
spectroscopy: What is the qualitative difference in structural flexibility of a
protein with and without ligand? This method, illustrated elsewhere in this
book, is quite useful considering the complexity of biomolecules. Sometimes,
however, differences between different samples are easier to obtain than repro-
ducable identical results. This chapter is addressed to students of biophysics,
who would like to proceed further. We present a modern statistical analysis
of neutron scattering data applied to biomolecules. We start from the sim-
ple model of the harmonic oscillator, introduce the visco-elastic oscillator and
conclude with a model-independent moment expansion of the density correla-
tion function. To illustrate the method, a number of recent results on protein
dynamics are presented. The power of neutron scattering is that it provides,
both spectral and spatial, information from which one can reconstruct in prin-
ciple the microscopic trajectory of labeled particles on a picosecond time scale.
Such results can be used to test molecular dynamic simulations of biomole-
cules, and simulations can be used to interpret the neutron scattering spectra.
Since protein–water interactions belong to the most interesting questions that
can be approached with neutron scattering, we start with a brief outline on
this topic.

20.2 Dynamics of Protein–Solvent Interactions

The nature of protein–solvent interactions is central to most basic questions
in molecular biophysics ranging from protein folding, protein–ligand associa-
tion to desease-related formation of protein aggregates. Biological structures
owe their existence to a delicate balance of weak hydrophilic and hydrophobic
forces, which are mediated by the solvent [1]. Moreover, proteins are dynam-
ical structures, which undergo continuous thermal motion induced by the
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solvent. Dynamic neutron scattering experiments allow probing the protein–
water fluctuations on the relevant time scales. In the absence of solvent or
in a rigid environment functionally relevant motions are arrested. Water thus
acts as a lubricant to protein dynamics. Figure 20.1 shows a neutron scattering
spectrum of myoglobin, exposed to three types of environment: vacuum (dehy-
drated), fully hydrated with D2O (0.4 g g−1) and vitrified in a perdeuterated
glucose glass [2].

The wings of the protein spectra appear to be broadened with respect to
the resolution function, which is the signature of structural fluctuations on
a picosecond time scale. It is obvious that the spectral broadening is more
pronounced with the hydrated sample. The excess broadening derives from
water-plasticized translational motions of side chains. That the spectra of
the dehydrated and the glucose-vitrified protein display a finite and similar
width, indicates rotational transitions of side chains, which persist irrespec-
tive of the protein environment. From a dynamical point of view, liquids and
proteins are radically different, liquids exhibit short-range order and long-
range translational diffusion. Molecular displacements in liquids are continu-
ous and isotropic. Proteins in contrast are long-range ordered, but molecular
diffusion is short-ranged. Internal displacements are discontinuous, rotational,
and anisotropic. The protein–water interaction introduces liquid aspects to
otherwise solid-like molecules. Molecular displacements in dense liquids are
dominated by short-range repulsive interactions. For a molecule to move also
requires that the nearest neighbors have to move. This is a collective phe-
nomenon resembling more a continuous search for escape out of a cage rather
than a discontinuous jump across an energetic barrier. By-passing the barrier
by collecting sufficient free volume instead of barrier crossing appears to be
the dominant diffusion mechanism in the liquid state [3]. The protein–water
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interaction causes the protein torsional barriers to fluctuate. The analysis of
these motions by dynamic neutron scattering is a classical topic, which has
been discussed by many authors, just to cite a small sample [4–6]. The rela-
tion between liquids and proteins was discussed in [7–11]. A recent review was
published in [12]. The neutron scattering method has the particular advantage
to probe the very low frequency range of a few terahertz, where vibrational
and relaxational motions overlap. The corresponding spectral features cannot
be assigned to vibrations of a particular group. Instead it is dominated by
collective motions of many particles. To illustrate the application of neutron
scattering to protein–water dynamics we follow a simple physical concept:
Protein structural fluctuations are spatially constrained by covalent and van
der Waals forces. As a general dynamic model of protein variables. we consider
a set of harmonic oscillators which are driven by the random forces of a heat
bath, which is essentially the solvent. The generalized protein coordinates Xα

then obey a Langevin equation driven by the random forces Rα

MαẌα + fαẊα + ω2
αXα = Rα(t). (20.1)

We thus pick up the basic idea of a normal mode analysis of proteins, comple-
mented by an appropriate frictional force [13,14]. Neutron scattering provides
the tools to study the frictional force. In a dynamic neutron scattering ex-
periment, the protein–water hydrogen atoms serve as a monitor to record the
trajectory of the Xα in space and time. The theoretical aspects of the applica-
tion of the Brownian oscillator model to neutron scattering has been discussed
by Kneller [15].

20.3 Properties of the Intermediate Scattering Function

An insightful article on the neutron scattering process was written by Mezei
[16]. Neutrons are scattered by the nuclei of the atoms, which are point-
like entities. The scattered beam pattern is thus determined by the super-
position (interference) of spherical waves emitted by the individual atoms.
The respective scattering amplitudes depend on the individual nuclear cross-
sections, which for C, N, O, H amount to σc = 5.5, 11.5, 4.2, and 1.76 b
(1 b = 10−24 cm2), respectively [17]. The coherent cross-sections, which spec-
ify phase-preserving processes, contribute generally less than 10% to the total
scattering intensity with protein samples. Three types of disorder generate
an incoherent background (a) chemical disorder, neutron waves scattered by
different types of atoms (N, C, H) or isotopes do not interfere; (b) positional
disorder, protein powder samples or protein solutions are rotationally disor-
dered, thus waves scattered by identical atoms in different proteins exhibit a
random phase relationship; and (c) spin disorder, the neutron cross-section
of hydrogen fluctuates depending on whether the respective neutron–proton
spins are parallel or antiparallel. The spin-disorder in combination with the
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negative scattering length of the proton, lead to a large incoherent cross-
section, σinc = 80.2 b [17]. Therefore, roughly 90% of the combined scattering
cross-section of D2O-hydrated protein samples is incoherent. The scattering
function Sinc(Q,ω) thus should be interpreted as the sum of intensities and not
as a square of the sum of amplitudes. Finally only those waves can interfere,
which originate from one and the same hydrogen atom. This is called “self-
interference” and refers to the average behavior of single particles: The motion
of the hydrogen atom modulates the phase of the scattered wave (Doppler
shift). The self- scattering trace in time thus reflects the trajectory of indi-
vidual particles. The coherent fraction corresponds to relative displacements
of two distinct atoms. Single particle motions are generally easier to interpret
than the relative motion of two distinct particles. One can thus derive most
of the relevant dynamical information from incoherent scattering, which has
the further advantage to be much more intense. Dynamic analysis of coherent
scattering is important with perdeuterated proteins or solutions with D2O.
The neutron scattering experiment determines the statistical average of the
phase factors at different times.

This is the self-intermediate scattering function Is,i(Q, t) defined for each
atom (i) by

Is,i(Q, t) = 〈exp(iQri(0)) · exp(−iQri(t))〉 . (20.2)

We omit the cross-sections, since we consider a system of hydrogen atoms,
dominating the scattering intensity. The scattering vector Q is an adjustable
parameter, which allows to modify the spatial scale probed by the scattering
process. Q = 4π/λn sin(θ/2) defines its length, λn denotes the wavelength of
the incident neutrons, and θ is the scattering angle. I(Q, t) can be expressed
as the Fourier transform of the van Hove self-correlation function in space,
Gs,i(r, t)

Gs,i(r, t) =
∫

d3Q

(2π)3
exp(−iQr) · Is,i(Q, t) . (20.3)

This even function in space (and time) [17] describes the single particle dy-
namics of a system averaged over the possible starting points in space. It
denotes the probability density, that atom (i) which is initially at r0 moves
to a position r within a time interval t. For a classical system it can be written
as

Gs,i(r, t) =
∫

d3r0 p(r0 + r, r0, t) · p0(r0) , (20.4)

with the equilibrium distribution

p0(r) = p(r, r0, t = ∞) . (20.5)

Thus the Q-dependence of Is,i(Q, tres) contains the complete information
about the single particle dynamics at any fixed instant of time t = tres (of-
ten defined by the energy resolution of the instrument). This argument is
stressed because the intermediate scattering function is usually introduced as
a correlation function versus time or spectrum versus frequency.
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Fig. 20.2. Intermediate scattering function, I(Q, t) of hydrated myoglobin at
300K, derived by Fourier-deconvolution of the dynamical structure factor S(Q, ω)
(IN6, ILL)

Figure 20.2 shows the experimental Q–t profile of the intermediate scat-
tering function of D2O-hydrated myoglobin averaged over all atoms (i). The
oscillations at short times reflect damped low frequency proteins modes (Bo-
son peak). Two processes with correlation times at 0.3 and 5 ps are visible at
high Q correspond to vibrational dephasing and fast water-coupled motions.
The variation with Q contains the geometry of the displacements. The decay
at Q = 0 is due to second-scattering processes, generating a Q-independent
quasielastic background (see below).

The interpretation of experimental data becomes most transparent in the
case of small Q and/or short times, as can be seen from the expansion of
Is,i(Q, t) in powers of Q2

Is,i(Q, t) =
∫

d3r exp(−iQr) · Gs(r, t) (20.6)

= 1 − 1
2
· Q2 · 〈(Q̂r)2〉(t) +

1
24

· Q4 · 〈(Q̂r)4〉(t) − O(Q6) (20.7)

with Q = Q·Q̂. This is the moment expansion of the displacement distribution
function G(r, t). In the limit

Q2 · 〈(Q̂r)2〉(t) � 1, (20.8)

only the first term of the expansion contributes and two essential consequences
arise:

– The correlation function and spectrum are completely determined by the
mean squared displacement.



466 W. Doster

– The intermediate scattering function and dynamic structure factor factor-
ize into a term ∝ Q2 and a purely time- or frequency-dependent function,
respectively,1

I(Q, t) = 1 − 1
6
· Q2 · 〈r2(t)〉, (20.10)

S(Q, ω) = δ(ω) +
1
6
Q2 · FT

{
−〈r2(t)〉

}
(ω). (20.11)

In the following we consider only the self-scattering functions averaged over
all atoms. S(Q, ω) denotes the so-called dynamical structure factor, which is
the quantity determined by most spectrometers (time-of-flight and backscat-
tering). It is obtained from constant angle cuts at fixed frequency and involves
interpolation (see below). The intermediate scattering function is then derived
by numerically transforming S(Q,ω) to the time domain

I(Q, t) =
∫

S(Q,ω) exp(iωt)d(�ω). (20.12)

If the inequality of Eq. 20.8 holds up to a certain time tmax, then the Fourier
transform is only valid in the set of discrete points

ωn = n · π

tmax
for n ≥ 1 . (20.13)

Note also that the measured linewidth of a localized process with time con-
stant τloc less than tmax, i.e.,

〈r2(tmax)〉loc ≈ 〈r2(∞)〉loc (20.14)

is independent of Q and is given by its actual value Γloc = 1/τloc. In ad-
dition the squared amplitude of such a process is directly given by the in-
tegral over the corresponding quasielastic spectrum. A localized motion or
glassy state leads to a long-time plateau of the intermediate scattering func-
tion, EISF(Q) = I(Q, t → ∞), the so-called elastic incoherent structure
factor. Then a purely elastic component (δ-function) arises in S(Q,ω) at
ω = 0. The EISF(Q) is the Fourier transform of the displacement distribution
G(r, t → ∞). A finite elastic fraction also obtains, if the correlations do not
vanish within the time defined by the energy resolution of the spectrometer.
With Eqs. 20.4 and 20.5 one obtains the useful relation

EISF(Q) =|
∫

dr · exp(iQr) · p(r − r0) |2 . (20.15)

The elastic fraction, EISF(Q), thus represents the orientationally averaged
(single particle) displacement distribution at infinite time.

1Let us – for notational simplicity – assume the usual case of an isotropic sample
(not necessarily isotropic dynamics!, see below) which leads to the orientational
average of the scalar products in the displacement moments

1

4π

∫
dΩ 〈(Q̂r)2n〉(t) =:

1

2n + 1
· 〈r2n(t)〉. (20.9)
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20.4 Relevant Time and Spatial Scales

What are the relevant spatial and temporal scales of molecular motions? The
shortest time scale is given by the ballistic flight: a particle with mass m is
moving with the thermal velocity vth =

√
kBT/m across a distance δ, which

requires a time τmic:

τ2
mic = (δ/vth)2 = m/(kBT · Q2). (20.16)

Here the length of the wavevector Q is an experimental parameter, which
defines a length scale Q = 1/δ across which the trajectory of the particle
is observed. Ballistic flight is a basic feature of motion in gases, but applies
also to molecular motions in liquids and proteins over short times. The cor-
responding intermediate scattering function is Gaussian [18]

I(Q, t) = exp[−(t/τmic)2] = exp[−(kBT/m) · Q2t2]. (20.17)

However, liquids and solids unlike gases exhibit a characteristic length scale,
the interparticle distance δ. Thus also a characteristic time scale exists

τ2
mic = δ2m/(kBT ), (20.18)

which is independent of the probing length scale 1/Q as in Eq. 20.15. τmic

is typically in the range of 0.5 ps for proteins depending on the mass of the
molecular fragments. For times larger than τmic collective interparticle cor-
relation becomes important, the correlation function deviates from a single
exponential decay and the correlation time depends on Q. This regime of
complex many-particle interactions is crucial to water-assisted protein flex-
ibility. At long times and large distances in isotropic liquids one enters the
hydrodynamic (Gaussian) limit: The correlation time depends on the chosen
scale: τ−1 = D ·Q2, where D is the diffusion constant of the particle. The cor-
responding intermediate scattering function is single exponential in time, the
quadratic Q-dependence reflects the Gaussian distribution of displacements

I(Q, t) = exp[−Q2 · D · t]. (20.19)

Protein internal coordinates are constrained by covalent and weak forces stabi-
lizing the native state. Long-range diffusion of side-chains is thus prohibited.
In Sect. 20.5 we investigate a model of Brownian motion constrained by a
harmonic potential.

20.5 The Brownian Oscillator as a Model
of Protein-Residue Motion

The harmonic oscillator, driven by random forces of the solvent, has been
frequently used as model of protein-residue motion. It is the basic concept
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underlying the normal mode analysis of proteins [13, 14]. Mössbauer reso-
nance spectra recording the motion of the heme group were analyzed using
a “rugged” Brownian oscillator (BO) model [19]. Surprisingly the BO is not
very popular among neutron experimentalists. Instead it is often assumed that
protein residues perform free diffusion inside a rigid sphere [20]. The oscilla-
tor model does not involve specific assumptions (which are hard to test) and
provides a more general perspective. It allows us to pick up the discussion on
time and length scales of chap. 19. An example of a Brownian mode analy-
sis was discussed for phycocyanin by Hinsen et al. [21]. Neutron scattering
probes the hydrogen atoms attached to the side chains and the main chain.
We assume that the amino acid positional fluctuations follow approximately
Eq. 20.1 and start with a one-dimensional model: V (x) = Kx2. The harmonic
potential implies for the deviations a Gaussian probability distribution. The
mean square displacements evolve at high damping monotonically toward an
equilibrium value, the average thermal amplitude δ2 [21, 22]

〈∆x2〉 = δ2 · (1 − exp[−2Γ0 · t]). (20.20)

The thermal amplitude amounts to δ2 = kBT/K. The relaxation rate is given
by Γ0 = K/f and D = kBT/f may be interpreted as a diffusion coefficient.
Inserting Eq. 20.20 into Eq. 20.6, yields the following intermediate scattering
function of the overdamped BO

IB(Q, t) = exp[−Q2δ2 · (1 − e−Γ0t)]. (20.21)

The correlation function, IB(Q, t), exhibits several interesting features shown
in Fig. 20.3. It is nonexponential in time, its effective relaxation time depends
on Q and it decays toward a finite plateau at long times the so-called elastic
incoherent structure factor, EISF(Q).

EISF(Q) = exp[−Q2 · δ2] (20.22)

Figure 20.3 shows an experimental intermediate scattering function derived
from D2O-hydrated myoglobin [7,8,23] covering a wide Q-range. This exper-
iment thus reflects essentially protein structural fluctuations. The harmonic
oscillator model fits the data below Q = 2 Å−1. But the observed long-time
plateau is much higher than predicted by the model at large Q. The spatial
constraints of the protein-displacements are thus more severe than those of
an isotropic harmonic potential.

The dashed line in Fig. 20.3 was obtained by assuming a two-dimensional
harmonic oscillator (see below). The EISF(Q) decreases with increasing spa-
tial resolution (Q) at fixed relaxation rate Γ0. Since IB(Q, t) is not a single
exponential one obtains a Q-dependent average relaxation rate according to

1
Γ

=
∫ ∞

0

dt(IB(Q, t) − IB(Q,∞))/IB(Q,∞). (20.23)
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Figure 20.4 shows the resulting average rate versus Q. At low Q, the relaxation
rate is independent of the spatial scale, the oscillator has explored its entire
phase space within a time τ = δ2/D. At intermediate Q the displacements
are diffusive, Γ ∝ Q2, while at high Q a limiting rate is achieved reflecting
the finite time required for discrete molecular steps. Also indicated in the
figure is the experimental range achievable by neutron scattering, Mössbauer
absorption spectroscopy and Rayleigh scattering assuming δ2 = 0.2 Å2. So AQ: Please check
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is changed to
“Rayleigh
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with Mössbauer spectroscopy at Q = 7 Å−1 one should observe a much larger
rate than for the same oscillator motion at Q = 2 Å−1 with neutron scattering.

20.6 The Visco-Elastic Brownian Oscillator

In our simple model we consider conformational fluctuations coupled to fast
motions of the solvent, which acts as a heat bath. The BO model of Eq. 20.1
assumes a clear cut separation of time scales between heat bath coordinates
and Brownian motion. This allows treating the random force as a δ-correlated
Gaussian process (white noise) and the friction coefficient to be time indepen-
dent. Protein structural fluctuations observed with neutron scattering occur,
however, on time scales comparable to solvent dynamics. Thus one has to
take into account explicitly the spectrum of random forces, which leads to
a time-dependent friction according to the fluctuation-dissipation theorem.
The Mori–Zwanzig theory provides an algorithm for the equation of motion,
which yields for the density correlator ΦQ(t) a generalized oscillator equation
containing a time dependent friction kernel m(t), reflecting the slow force cor-
relations [3, 24, 25]. Ω and γ0 denote a generalized frequency and a regular
damping coefficient:

Φ̈Q(t) + Ω2ΦQ(t) + γ0Φ̇Q(t) + Ω2

∫ t

0

dt′m(t − t′)Φ̇Q(t′) = 0 . (20.24)

A general solution to Eq. 20.24 can be given in the frequency domain for the
spectrum S(Q,ω) [3, 18]

S(Q,ω) = −Im
{

ω + Ω2M(Q,ω)
ω2 − Ω2 + ωΩ2M(Q,ω)

}
. (20.25)

“Im” denotes “imaginary part of” and i =
√
−1. M(Q,ω) represents a gen-

eralized friction kernel, which can be decomposed into a Newtonian friction
γ0 (collisions) and a slow relaxing part mps(Q,ω) due to protein solvent cou-
pling [25]

M(Q,ω) = iγ0 + mps(Q,ω). (20.26)

To illustrate the basic features of visco-elasticity, we introduce Maxwell’s re-
laxation model. The spectrum of force correlations is Lorentzian in shape,
corresponding to an exponential decay of the force correlations [25,26]

mps(τ, ω) = −F (Q)/(ω + i/τ). (20.27)

F is the amplitude and τ denotes the characteristic time of the relaxing fric-
tion, which is proportional to the viscosity η = G∞ · τ . G∞ is the high fre-
quency shear modulus of the liquid. The real part of mps(ωτ) contributes to
the elastic modulus, while the imaginary part yields a frequency-dependent
friction coefficient, f(τ, ω) ∝ m′′

ps(τ, ω):

ωm′′
ps(τ, ω) = F (Q) · ωτ

1 + ω2τ2
. (20.28)
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The dissipation rate thus assumes a maximum at ωτ = 1. The friction
coefficient vanishes in both limits, f(τ → ∞) ∝ τ−1 and f(τ → 0) ∝ τ at
fixed ω as shown in Fig. 20.5. The visco-elastic system thus turns into an elastic
solid if the correlation time and thus the viscosity of the heat bath diverges.
The same arguments apply to a variation of the frequency at fixed τ . For the
simple BO increasing friction will always enhance the viscous properties. As
shown in Fig. 20.6a, increasing the damping constant γ leads to a downshift
and broadening of the resonance maxima. In the overdamped regime only a
narrow central line will remain. In the visco-elastic case, the friction coefficient
declines with increasing frequency. Thus even at high viscosity or large τ , an
oscillation will persist since τ 
 ω−1

0 .
Experimental neutron scattering spectra behave very much like those in

Fig. 20.6b. The vibrational feature near 3 meV has been termed the “boson
peak,” and involves low frequency oscillations of the protein structure. It is
most prominent for large τ (low temperature and high viscosity) and becomes
“overdamped” at high temperatures, when the viscoelastic relaxation times
are comparable to ω−1

0 . A visco-elastic analysis was performed with neutron
scattering data of myoglobin [8, 26]. The low-temperature spectrum (150 K)
was adjusted to Eq. 20.25, assuming two oscillators as shown in Fig. 20.7. Then
by decreasing only the visco-elastic relaxation time τ , the spectrum at 300 K
could be simulated. Note that the maximum of Ω2 is nearly independent of
τ in contrast to Ω1. Note also the difference in position of the boson peak at
low temperature between dry and hydrated myoglobin [27].

In this particular experiment we were interested whether the energy of
photons absorbed by the heme group of myoglobin was channeled into low fre-
quency vibrations near 30 cm−1. Following a laser pulse at 532 nm, we found
a simultaneous emission in the far infrared below 50 cm−1, suggesting exactly
this [26]. The self-friction kernel mss(Q,ω) of simple liquids has been calcu-
lated on a molecular basis by mode-coupling theory (MCT) [3]. MCT predicts
a self-induced structural arrest of the liquid, when the density, depending on
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temperature, pressure, and number concentration, exceeds a critical value.
The signature of the glass-transition are nonvanishing density correlations
and thus a finite value of the long time intermediate scattering function as
shown in Fig. 20.8. MCT approximates the so-called cage effect, each particle
is surrounded by a cage of nearest neighbors. Escape out of the cage (the
α-process) constitutes the first step leading to long-range diffusion, which is
the essence of the liquid state.

Fast local motions (β-processes) can also occur in the glass, but their
amplitude (not their rate!) decreases when the density increases. In water,
β-processes include hydrogen bond fluctuations and reorientational motions
while the α-process involves translation. The glass transition is accompanied
by a diverging α-relaxation time, the cage becomes a trap. This reasoning
also applies to protein hydration water, which forms a glass at low tempera-
tures [28]. As mentioned in Sect. 20.1, protein residues in a native structure
are highly constrained and cannot perform long-range translational displace-
ments. A native protein is not in a liquid state and thus cannot exhibit a
liquid to glass transition. However, the protein residues are frictionally cou-
pled to hydration water, which performs a self-induced glass transition at low
temperatures [28]. Consequently, water-coupled protein motions will also be
arrested because the plasticizer is arrested. Vitrification can also be achieved
by cosolvents which seems to be equivalent to dehydration, as Fig. 20.1 shows.
Sticking to the generalized oscillator concept, one may introduce the dynamic
protein–solvent interactions at the level of the friction kernels

mps(ω) ≈ mp(ω) + mss(ω). (20.29)
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The internal friction due to water-decoupled structural motions is represented
by mp. With this kernel, water-coupled structural fluctuations will freeze in
parallel with the hydration water and behave liquid-like at high temperature.
Proceeding in this direction, we have to study the properties of hydration
water, which is a true liquid.

20.7 Moment Analysis of Hydration Water
Displacements

In the following we analyze experiments performed with H2O-dehydrated myo-
globin in the range of 0.35 g g−1 degree of hydration. At this level, most of
the water is in close contact with the protein surface. The hydration water
does not freeze forming ice at low temperatures, instead it vitrifies forming
an amorphous structure [28]. Figure 20.9 shows the intermediate scattering
function I(Q, t) of water in the hydration shell of H2O-hydrated myoglobin
at various Q-values. It is obtained by Fourier-transforming the spectral func-
tion, S(Q,ω). The amplitude of the fast component at 0.3 ps increases with Q
indicating that this component is highly localized. It reflects damped transla-
tional oscillations of water molecules. The rate constant of the second process
increases with Q (spatial resolution) [29].

This is a characteristic feature of translational diffusion. One expects an
exponential correlation function with a characteristic rate 1/τ = Q2 · D with
diffusion constant D. Instead we observe a stretched-exponential decay where
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Fig. 20.9. Intermediate scattering function of myoglobin hydration water at
0.35 g H2O per g protein and fits to a stretched exponential function (IN6, ILL) [29]
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the diffusion coefficient is Q-dependent [29]

I(Q, t) = exp[−Q2 · D(Q) · t]β = exp[−Q2 · 〈r2(Q, t)〉/6]. (20.30)

The stretched behavior, (β < 1) results from partially localized water mole-
cules at the protein surface. The second equality in Eq. 20.30 refers to a more
general property of I(Q, t), which may be expanded in terms of the second
and higher moments of the displacement distribution function according to
Eq. 20.6

I(Q, t) = 1 − A0(t) −
1
6
Q2

〈
r2(t)

〉
+

1
24 · 5 · Q4

〈
r4(t)

〉
− ... . (20.31)

Adjusting the data to a fourth-order polynom yields the second and the fourth
moment of the displacement distribution function G(r, t). In practice one has
to account for multiple scattering corrections A0(t) [29,30]. Figure 20.10 shows
the mean square displacements of protein interfacial water in comparison
with bulk water [29]. The data on bulk water by Brockhouse and collabo-
rators provided the first information on fast motions in a liquid using neutron
spectroscopy [31]. After the initial rise due to vibrational dephasing, the dis-
placements of bulk water reach the limiting diffusion region (

〈
∆x2

〉
= 2D · t),

within 10 ps. The slope of the dashed line corresponds to the long time diffu-
sion coefficient of water, D = 2.45 · 10−5 cm2 s−1.

Note the sublinear regime near 1 ps, which reflects the motion of water
molecules inside the cage formed by its nearest neighbors. For interfacial water
the sublinear range is drastically extended, it takes about 100 ps to reach the
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Fig. 20.10. Time-resolved displacements of bulk water and myoglobin interfacial
water at 0.4 g D2O per g protein versus temperature (IN6, ILL; full circles: IN15,
ILL)
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Fig. 20.11. Gauss deviation (fourth moment) of the hydration water displacement
distribution versus time of myoglobin (0.35 g g−1)

regime of regular diffusion. The protein thus enhances the cage effect leading
to partially localized water states. With decrease in temperature the cage
becomes a trap. The extended plateau at 180 K is the signature of a solid
state. Structural arrest is achieved continuously as the temperature decreases,
which excludes discontinuous transitions such as ice formation.

Figure 20.11 shows the time-dependent fourth moment of the water dis-
placement distribution which is larger than the Gaussian value of 0.5. This in-
dicates that water displacements near the protein surface occur preferentially
along a preferred direction. However, at times above 100 ps, the Gaussian
value is reestablished, consistent with the observed linear time dependence of
the second moment, Fig. 20.10.

20.8 Analysis of Protein Displacements

We now turn to protein motions. As mentioned earlier the relevant spatial
information is contained in the Q-dependence of the intermediate scattering
function I(Q, t). Figure 20.12 shows this function at fixed tres = 50 ps versus
temperature for myoglobin in three environments of Fig. 20.1.

A linear (Gaussian) behavior of ln[I(Q)] versus Q2, is observed at low tem-
peratures reflecting vibrational displacements. But above 200 K nonGaussian
deviations, first described in [7] become significant. Nearly identical scatter-
ing functions are found for the dry and vitrified sample, pointing to similar
intramolecular motions. The addition of water has a significant effect on the
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Fig. 20.12. Long time value of I(Q, t ≈ 50 ps) versus Q and temperature for dry
myoglobin. Selected data of vitrified and hydrated myoglobin are also shown, line:
fit to Eq. 20.18, instrument: IN13, ILL

density correlations, indicating water-assisted protein displacements. The sim-
plest model, which fits the data, is a displacement distribution composed of
two Gaussians [32,33]

I(Q,T, tfix) = A1 · exp(−Q2
〈
x2

1

〉
/2) + A2 · exp(−Q2

〈
x2

2

〉
/2). (20.32)

Figure 20.13 shows the second moments of the two Gaussian components de-
termined on absolute scale [7, 10].

The first component has a plateau at low temperatures given by the pro-
tein zero point vibrations (0.014(±0.002) Å2. This component shows harmonic
behavior across the whole temperature range in the case of the dehydrated and
the vitrified system. However, in the hydrated system an additional increase
occurs above 240 K due to water-assisted motions. In contrast the second com-
ponent emerges above 150 K and leads to a nonlinear enhancement in the to-
tal displacements independent of the protein environment. Figure 20.14 shows
that the corresponding displacement distribution of hydrated myoglobin at
fixed time versus temperature, 4π r2G(r, T, t = 50 ps). Component 1 broad-
ens with increasing temperature due to vibrational motions. But above 240 K
the maximum is shifting and the width increases. This effect points to small
scale continuous motions. It is seen only with hydrated samples. In contrast,
component 2 is observed in all samples independent of the protein environ-
ment. It has its maximum near 1.5 Å, indicating large scale excursions.

What is the molecular nature of the two types of motions? Several au-
thors have emphasized the relevance of dynamical heterogeneity in the con-
text of neutron scattering experiments [33, 34]. With neutron scattering we
probe, because of their large cross-section, the trajectories of nonexchangeable
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hydrogens, which are attached to the protein side-chains and, to a minor frac-
tion, to the main chain. As discussed above structural changes of the protein
chain involve mostly rotational jumps, while displacements in liquids are more
continuous and on a small scale. Rotational jumps of methyl groups and of
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heavy atom dihedral transitions are the most natural modes of motion of a
polypeptide chain. Moreover, the partial cross-section due to methyl groups
is about 25%, which is the most significant individual contribution. Since we
know its partial cross-section, the structure factor and the barrier to rotation
from energy-resolved experiments one can calculate the scattering function
without adjustable parameters. The results are shown as the solid lines in
Fig. 20.12 and 20.13. The average rotational barrier of methyl groups in myo-
globin amounts about 10 kJ mol−1. The increase in the apparent displacements
due to component 2,

〈
∆x2

〉
2
, in Fig. 20.13 most likely results from an increas-

ing rotational rate at fixed instrumental resolution (50 ps). A low temperatures
the apparent displacement of component 2 is zero because the transitions are
too slow to be resolved by the instrument. The slight discrepancy between the
data and the theoretical curve at low temperatures may indicate a distribution
of rates. The close agreement with experimental data produced by this model
suggests strongly that rotational transitions, essentially of methyl groups, are
the origin of the nonGaussian displacement distribution. Dynamical hetero-
geneity seems to be of minor importance. Rotation of methyl groups occurs in
the hydrated, the dry as well as in the vitrified state. Water induces additional
small scale protein displacements, which appear as anharmonic enhancements
of the vibrational component 1.

20.9 Data Analysis

High resolution instruments collect data at constant angle and not at constant
Q in contrast to three-axis spectrometers. As a result one has to transform
the experimental data from a “constant angle” to a “constant Q” format:
The momentum exchange, ∆p = �Q, at fixed angle, varies with the energy
transfer �ω, according to [17]

Q2 =
2mn

�2
(2E0 + �ω − 2cos(θ) ·

√
E0(E0 + �ω)). (20.33)

To determine the physically relevant quantity S(Q,ω) based on S(θ, ω)
data involves extrapolation and interpolation as indicated in Fig. 20.15. Only
the area of the kinetic plane enclosed by the lines contains experimental data.
Figure 20.16 illustrates for a particular case, how the “constant angle” data
differ from the final interpolated “constant-Q” spectrum.

The low-Q regime, which is quite important to data analysis, is ham-
pered by two difficulties; the necessity to extrapolate finite Q data and the
relevance of multiple scattering. Multiple scattering tends to generate a Q-
independent inelastic background [35]. Figure 20.17 shows that even for a thin
sample with 91% transmission about 15% of the incident neutrons are multiply
scattered.
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A very detailed analysis always requires consideration of multiple scat-

AQ: Please check
that “mwV” is
changed to “meV”.

tering. An initial estimate is the Q-independent background extrapolated to
Q = 0. Then the corrected spectrum can be used to calculate the multiple scat-
tering corrections iteratively. This is particularly relevant to high-frequency
data [30].
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20.10 Conclusions

Dynamic neutron scattering provides a unique tool to probe the statistical
properties of picosecond motions in biomolecules. To understand the effect of
water on structure and stability of proteins requires to study the interactions
on the time scale where hydrogen bonds are broken and formed. INS thus
complements other local methods like NMR and fluorescence emission. We
suggest to assume a general perspective without resigning too early to particu-
lar models: A moment analysis of scattering data leads to model-independent
insight into molecular mechanisms. It requires, however, high quality data.
Two classes of protein displacements could be discriminated: torsional tran-
sitions and water-assisted motions. The latter are composed of fast H-bond
fluctuations and slower small scale displacements. The dynamical transition is
driven by the H-bond dynamics of hydration water [10,28,36], which has, how-
ever, minor effects on the rotational transitions. The transition temperature
thus varies with H-bond strength and viscosity [37]. Within a glass-transition
scenario our results support the notion of water-plasticized β-processes in pro-
teins proposed by Green and Angell [11]. A quite interesting perspective is to
study the real time protein–water coupling processes using generalized har-
monic oscillator models. Structural rearrangements correlated with motions of
water molecules occur on a time scale of picoseconds. In what sense is then the
fast motion of water molecules relevant to the observed slow substrate conver-
sion in enzymes? For myoglobin, it could be shown, that the solvent modulates
the barrier which controls ligand entry and escape according to Kramers law
of activated escape [37,38]. The solvent generates the “seascape” of fluctuating
barriers. This does not imply, that protein activity occurring on a time scale
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of seconds vanishes, because of reduced picosecond structural fluctuations as
suggested in [39]. The essential dynamical quantity is the solvent viscosity
(Eq. 20.1), which was not taken into account in [39]. The displacements of
molecules on a microscopic scale including water molecules in the active site
are discontinuous and always fast. The millisecond time scales come about by
high energetic or entropic barriers which prevent particular rearrangements
for long-time intervals. Enzymes are thus devices, which select by construction
a small fraction of events out of a large number of fast structural fluctuations.
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