
Metadata of the Book that will be visualized online

Book Title Dynamics of Soft Matter

Book SubTitle Neutron Applications

Copyright Year 2012

Copyright Holder Springer Science+Business Media, LLC

Family Name Longeville

Particle

Given Name Stéphane

Corresponding Author

Suffix

Division Laboratoire Léon Brillouin

Organization CEA Saclay

Address F-91191 Gif sur Yvette, Cedex, France

Email

Family Name Doster

Particle

Given Name Wolfgang

Author

Suffix

Division Technische Universität München

Organization Physik Department E 13

Address James Franck Strasse 1, D-85747, Garching, Germany

Email



UNCORRECTED
PROOF

Chapter 8 1

Protein Dynamics and Function 2

Stéphane Longeville and Wolfgang Doster 3

8.1 Introduction 4

Proteins were discovered by the Dutch chemist G. Mulder as early as 1838. They 5

were named by J. J. Berzelius from the Greek word Protos, which signifies first 6

in importance, probably because they constitute more than 50% of the dry weight 7

of the cells. Another explanation suggests that proteins (like protean) arise form 8

the Greek god Proteus who has the capability to appear under different forms. 9

This refers to the very strong variety of protein structures but such an approach 10

is an anachronism because protein structures were only studied during the twentieth 11

century. 12

Proteins are ubiquitous in cells and serve all types of metabolism and function: 13

they can be structural proteins, help transport or catalyse reactions and also be 14

involved in regulation and signal pathways or act as molecular motors. Proteins 15

are biological macromolecules composed of one or several chains of amino acids 16

whose amino acid sequences are coded by the genome and constitute the primary 17

structure of the proteins. To achieve their function, most of them must reach a unique 18

structure by a folding mechanism, which is not fully understood and is a very active 19

field of

AQ1

structural biology. 20
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The structure–function relationship alone does not account for protein activity, 21

since structural fluctuations and conformational adjustments are required to adapt 22

to the conversion of substrate molecules and regulation. Biological physics is based 23

on soft interactions dominated by kBT at ambient temperature. Thus “cold” neutrons 24

with typical wavelengths of 5–10 Å, and energies of a few meV allow the study of 25

atomic and molecular structures together with their motions. In contrast, the typical 26

energies of photons at atomic wavelengths, X-rays, are in the range of keV far above 27

kBT . It is also interesting to notice that low-temperature measurements on biological 28

objects will be necessary to unravel the different dynamical mechanisms by time 29

separation or study of the activation energies. Therefore, high energy resolution of 30

some neutron spectrometers will be relevant for biological physics. Small angle 31

neutron scattering has now been used for more than 40 years [1] to unravel the 32

structure of proteins in solution or in crystal form. Inelastic and quasielastic neutron 33

scattering investigations of proteins really started with the study of dynamical 34

transition in hydrated powders [2] and has developed over the past 20 years to 35

measurements of protein diffusion in vivo [3]. 36

The information on the structure and dynamics of macromolecules obtained from 37

a neutron experiment are fully described by the dynamical structure factor S(Q,ω) 38

in the frequency domain, or equivalently the intermediate scattering function, I(Q,t), 39

in the time domain. These have been described in the previous chapters. These 40

two functions are generally very difficult to manage since they are composed 41

of contributions from the different dynamical processes weighted by the atomic 42

scattering length. A given scattering centre inside a protein performs different types 43

of motions including Brownian translational and rotational motions, large-scale 44

internal and small group fluctuations and high-frequency oscillations. This leads to 45

a complicated dynamical function (or intermediate scattering function depending on 46

the type of measurement). To separate the different types of motion it is necessary to 47

use different types of samples (powder, solutions, in-cell measurements, etc.)AQ2 as well 48

as employ various spectrometers with different wave vector and frequency ranges. 49

In addition, the large difference in scattering length densities between hydrogen 50

and deuterium, can be used to either hide the contribution of some molecules (for 51

example, the water) or selectively probe self- or collective dynamics, for example. 52

The signal is separated into incoherent scattering functions which measure the self- 53

correlation of all atoms in the sample and coherent ones, probing the pair-correlation 54

function of all centres. 55

For a solution of biomacromolecules such as proteins, the motions are generally 56

separated into global and internal motions. The former include generally transla- 57

tional and rotational Brownian diffusion, which depends at very low concentration 58

on the temperature, a friction term as a function of the solvent viscosity and 59

the shape of the macromolecule. The latter includes all low-frequency and high- 60

frequency modes of motions together with possible large amplitude domain motions 61

overdamped due to the friction with the solvent. 62
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8.2 Protein-Internal Motions 63

Most proteins contain an active site, which is generally shielded from the solvent, 64

thus providing a unique environment for chemical reactions. However, the substrate 65

and product molecules must enter and leave the protein site, which involves the 66

solvent. The main goal of this chapter is to demonstrate that protein-internal motions 67

and functional processes can be classified into two types: 68

Class 1 are those solvent-decoupled processes which represent truly internal 69

motions. In contrast, the rates of class 2 motions vary with the viscosity of the 70

solvent near the protein surface. 71

8.2.1 Protein-Internal Structural Motions and Biological 72

Function 73

We start the chapter on protein-internal motions with a detailed look at protein 74

function. Each protein has its unique function, so there is no general definition, 75

that applies to all proteins. The notion of “biological function” denotes an overall 76

process, which is composed of several elementary steps. For instance, the loss of 77

proteolytic activity of the protein “lysozyme” below a critical degree of hydration 78

(0.25 g water/g protein), less than a monolayer, is often attributed the loss of water- 79

mediated motion at the active site [4]. A more likely reason for the loss in apparent 80

activity is the transfer of substrate molecules, which is arrested at low hydration. 81

In the following, we define protein function as a protein-assisted multi-step process 82

involving a small ligand molecule: Several elementary steps contribute to the overall 83

reaction, which defines the protein activity: 84

• The ligand in solution is transfered across the protein-solvent interface 85

• The ligand migrates through the protein structure to the active site and 86

• The ligand binds to the active site, where it is chemically transformed 87

To complete the functional cycle, also the reverse reactions must happen: the 88

dissociation of the possibly modified ligand from the active site, migration through 89

the protein matrix and release to the solvent. Since proteins are close-packed 90

structures, the incorporation of a ligand may induce a structural reorganization 91

assisted by small-scale fluctuations. Here, packing defects in the otherwise dense 92

protein structure play an important role. 93

This issue has been extensively studied with the heme protein, myoglobin. It 94

reversibly binds gas ligands at the heme site, which is buried from the solvent 95

in the protein matrix. The heme–iron binding site, blue in Fig. 8.1, is thus not 96

directly accessible to the ligands.The “arms” of the heme group, however, the 97

polar propionic acid side chains, reach out into the solvent and couple the heme 98

displacements to motions in the solvent [5]. 99
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Fig. 8.1 Secondary structure of the oxygen storage protein myoglobin with helices A–F, the heme
group (blue), which binds oxygen, the xenon-binding cavities 1–4 (orange), the distal His64 (E7),
the distal cavity docking site B and the proximal docking site C. The arrow denotes the most
probable ligand escape pathway into the solvent. via the distal gate of His64th
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Because gas ligands must find their way to the heme by migrating through 100

dense protein structure, structural fluctuations and internal cavities are required 101

to facilitate ligand binding. With X-ray scattering various cavities in myoglobin 102

were discovered, which act as xenon binding sites. These Xe-docking sites turned 103

out to be crucial to the tranfer of small gas ligands like dioxygen of CO inside 104

the protein [6, 7]. The four major Xe-binding sites are indicated in Fig. 8.1. Time- 105

resolved X-ray crystallography of the photolysed Mb–CO complex and molecular 106

dynamics simulations have established a series of ligand dockings sites and their 107

time sequence [8–12]: 108

After photolysis from the Fe-binding site A, the CO-molecule occupies the distal 109

pocket B (Fig. 8.1) from which it can rebind to A, or escape to the solvent S via 110

the distal gate of HisE7. Rebinding from the solvent S →A is the slowest process. 111

An alternative route from B involves the transfer via cavity Xe4 to the proximal site 112

of the heme, Xe1 or Xe2. In the latter case, rebinding occurs from the kinetic state 113

C →A. Further exit pathways involving Xe3 have been identified by simulations 114

[10–12]. The kinetic results can be represented by Gibsons four state model [7]: 115

S � B � C 116

� 117

A 118
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Fig. 8.2 The recombination kinetics of carbon monoxide (CO) to the heme iron of myoglobin after
dissociation by a laser flash in various solvents with different viscosity: 60% (by weight) ethylen-
glycol/water, 90% glycerol–water, 80% sucrose–water and 98% sucrose–water. Three kinetic
intermediates according to the scheme are indicated: S (solvent), B (distal pocket), C (protein
matrix and proximal site). The arrow emphasizes the constant time position of the C-intermediate
with increasing solvent viscosity

In the following, we discuss the action of the solvent, and of the solvent viscosity 119

in particular, on elementary steps of CO-binding to myoglobin. For this purpose, we 120

have reevaluated the early flash-photolysis experiments of Kleinert et al. according 121

to Gibsons kinetic scheme [4, 13, 14]. 122

Figure 8.2 displays the recombination kinetics of CO + myoglobin after a nano- 123

second laser flash in solvents of varying viscosity. The three kinetic intermediates, 124

B, C and S, are also indicated. The arrow points towards a drastic increase in the 125

solvent viscosity. The main effect of viscosity on the kinetics is the reduction in the 126

amplitude of the slowest process, the external rebinding from the solvent, S→A. 127

The amplitude of S→A is equal to the escape fraction of ligands, Nout ≤1, which 128

leave the protein after photolysis instead of rebinding internally. A decrease of Nout 129

indicates, that the ligand exit rate across the protein–solvent interface decreases with 130

the external viscosity. At 90% sucrose-water, the solvent is in a glassy state at 290 K. 131

Below the glass temperature Tg ≈ 325 K, the viscosity is infinite, thus Nout ≈ 0. 132

As Fig. 8.2 shows, that the internal (geminate) recombination process and ligand 133

migration involving the decay of the intermediates B and C are still operating in spite 134

of a glassy external environment. The rate of C → A seems to be rather independent 135

of the solvent viscosity. The amplitude of the fast geminate recombination from 136

the heme pocket B → A, increases with the solvent viscosity in compensation to a 137

decreasing Nout. Figure 8.3 shows several internal transition rates versus the external 138
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Fig. 8.3 Internal transition rates of CO in myoglobin at 290 K versus the external solvent viscosity
according to the four state model

viscosity, evaluated according to the kinetic four-state model: The formation of the 139

covalent bond at the heme iron (B→A) and the crossing rate from the distal to 140

proximal site of the heme kBC are independent of the viscosity. Since the intercavity 141

migration of the CO molecule requires structural adjustments, one has to invoke the 142

existence of class 1 structural fluctuations, which are decoupled from the solvent. 143

On the other hand, the exit and entry rates belong to class 2 fluctuations, which are 144

strongly coupled to the solvent [14]. The viscosity of various biosolvents versus the 145

temperature is given in Fig. 8.4 [13]. 146

The data were obtained from a combination of viscosity and specific heat 147

spectroscopy experiments. The relaxation rate and viscosity are related by the 148

Maxwell equation [13, 14]: 149

η = g∞ ·T · τs, (8.1)

where g∞ denotes the high frequency bulk modulus, ≈109
[
cP ·K−1s−1

]
[13]. 150

Figure 8.5 displays CO-exit rates from horse myoglobin versus the viscosity 151

in several solvents. The viscosity in a given solvent is modified by varying the 152

temperature. In addition to a dependence of viscosity, the exit rates also depend on 153

a protein intrinsic barrier of HBS ≈ 25 kJ/mol [13, 14]. For this reason, the absolute 154

values of ks and kBS differ by a factor of 100. To compare the exit rates between 155

different solvents, the data were corrected to a common temperature of 290 K based 156

on Kramer’s law of activated escape [14]: 157

kBS =
A
ηs

· exp(−HBS/RT ) (8.2)
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Fig. 8.4 Solvent relaxation rates ks ∝1/η derived from viscosity and specific heat spectroscopy ex-
periments ref.[13]. Acronyms: S(sucrose), W(water), G(glycerol), E(ethylene glycol). Myoglobin
hydration water was measured with neutron scattering [14]. Lines are fits to a super-Arrhenius VFT
law, (8.11)

A is a prefactor and ηs denotes the viscosity near the protein surface. The results 158

are also shown in Fig. 8.5. In glycerol-water, the CO-exit (and entry) rates vary 159

with the inverse of the bulk viscosity kBS ∝1/η . Moreover, the respective values of 160

kBS(η) fall right on top of each other, at least at high viscosity. This shows that the 161

bulk viscosity is the essential parameter, while the chemical composition plays a 162

minor role. These processes thus belong to class 2. In contrast, in the 80% sucrose- 163

water solution, the exit rates vary less than the reciprocal bulk viscosity and may 164

exceed ks at high viscosity. Such reduced viscosity effects have been interpreted as 165

indicating a fractional solvent exposure of the reaction, leading a sublinear power 166

law [16]. However, the cosolvent sucrose is known to be partially excluded from the 167

protein domain. The thermodynamic experiments of Timasheff and collaborators 168

have shown that the concentration of cosolvents near the protein surface can be 169

different from the bulk [17]. Some cosolvents like sucrose are more excluded than 170

others from the protein domain, leading to a reduced viscosity near the surface 171

as compared to the bulk [5, 13, 14, 17]. This exclusion can explain the observed 172

sublinear viscosity effect and the dependence like: ηs = ηκ
bulk with the exponent 173

κ ≤1. At lower viscosities the CO-exit rates in glycerol-water and in dilute aqueous 174

solution deviate however from a 1/η law. In this regime, the escape of CO, which 175

requires the displacement of solvent molecules to create a cavity, becomes less 176

and less rate-limiting. Ansari et al. report on a similar viscosity dependence of 177

a conformational transition rate of myoglobin, which nearly coincides with the 178

CO-exit rate as shown in Fig. 8.4 [15]. The onset of a plateau, which they observe 179

at low viscosity, has been attributed to the influence of an protein-internal viscosity. 180
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Fig. 8.5 CO-exit rates kBS versus viscosity in several solvents, reevaluated experiments of ref. [13]
corrected to 290 K: open triangle: in aqueous solution, filled triangle: 75% glycerol-water, full
squares: 90% glycerol-water, full circles: 80% sucrose-water, open squares: rate of conformational
change of myoglobin in 56 and 79% glycerol-water [15], full line: solvent relaxation rate ks in 75%
glycerol-water [14]

We thus arrive at the simple and basic conclusion, that the kinetics of ligand binding 181

to myogobin can be decomposed into elementary steps, which belong either to 182

class 1 (internal) or to class 2. 183

It was anticipated, that the CO migration requires the assistance of structural 184

fluctuations. We thus turn to the question, whether a similar classification into 185

two classes can be performed with structural relaxation processes in myoglobin. 186

An important class of fluctuations refers to displacements of the heme group, 187

which is the active site. With Mössbauer spectroscopy, one can derive displacement 188

fluctuations of the heme iron on a nanosecond time scale [5,18,19]. Results obtained 189

with different solvents are shown in Fig. 8.6a: The displacements follow a linear 190

temperature dependence reflecting vibrational motions independent of the protein 191

environment. Above about 200 K a dynamical transition occurs, the displacements 192

increase, because structural relaxation processes are being increasingly resolved 193

within the pico- to nanosecond window of the spectrometer. Most interesting, 194

the onset of the transition depends on the solvent composition: While myoglobin 195
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a

b

Fig. 8.6 (a) Dynamcial transition and mean square displacements of the heme of myoglobin from
Mössbauer spectroscopy in myoglobin crystals (open circles), 75% glycerol-water (open squares)
and 80% sucrose-water (triangles) [5] (b) Solvent escape fraction Nout of CO after photolysis from
myoglobin in 75 and 90% glycerol-water [14]

crystals and myoglobin in a 75% glycerol-water solution exhibit a common onset 196

temperature of TΔ ≈ 210 K, with the more viscous solvent 80% sucrose-water one 197

observes that the onset is shifted to a higher temperature of TΔ = 240 K. The motion 198

of the heme group thus belongs to class 2 fluctuations. One type of heme-solvent 199

coupling could occur directly via its polar side chains or indirectly via protein- 200

matrix fluctuations. 201

Figure 8.6 also displays the respective bulk glass temperatures. The structural 202

relaxation time at Tg is in the range seconds and the viscosity approaches 1013
203

Poise. The same α-process is presumably probed by Mössbauer spectroscopy on a 204

much faster time scale, the respective time resolution is the nuclear life time of the 205
57Fe nucleus of 140 ns. This time shift leads to an upshift in the onset temperature 206

of recorded relaxational displacements from Tg to TΔ . One should expect that the 207
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bulk solvent viscosities at the onset temperatures are equivalent. The sucrose-water 208

system however has a much higher bulk viscosity at 240 K than glycerol-water at 209

210 K. This discrepancy suggests as above, that the surface viscosity is drastically 210

lower with protein-sucrose-water than the bulk value due to preferential hydration 211

[5]. Fig. 8.6b)AQ4 relates the structural coordinate of heme displacements to a functional 212

parameter, the ligand escape fraction Nout. The kinetic onset shows a similar upshift 213

in TΔ in the more viscous solvent. Nout is also a dynamic quantity, reflecting the 214

partitioning between ligand escape and internal rebinding. In the four state model, 215

it can be approximated by: 216

Nout = kBS (η)/(kBA + kBC+ kBS (η)). (8.3)

At the onset temperature of 250 K with 75% glycerol-water, kBA is approximately 217

2× 106 s−1 and kBS amounts to 2× 105 s−1, while kBC can be neglected, yielding 218

for Nout ≈ 0.1. This is close to the observed value of Nout at 250 K. In this case, 219

the relevant biological ”resolution” time is set by the solvent-independent internal 220

binding rate kBA. Biological function turns on, when the escape rate starts to exceed 221

the internal binding rate. On this biologically relevant time scale, the “dynamic 222

transition” occurs at 250 K with 75% glycerol-water solvent. In the next section, 223

we investigate other structural processes of myoglobin probed by elastic and quasi- 224

elastic neutron scattering. 225

8.2.2 Dynamical Structural Distributions in Proteins 226

In the following we show how the displacement distribution can be reconstructed 227

from experimental neutron scattering functions based on a moment expansion 228

[4,20,21]. We again use myoglobin in various environments. As with kinetic exper- 229

iments, one can discriminate between class 1 and class 2 type fluctuation according 230

to their coupling to the solvent. The neutron scattering cross-section of D2O- 231

hydrated proteins is dominated (95%) by the non-exchangeable hydrogen atoms and 232

thus incoherent scattering. The corresponding self-intermediate scattering function, 233

Is(Q,t) records displacements of individual hydrogen atoms (j) [4, 21]: 234

Is(Q, t) = 〈exp(iQr j(0)) · exp(−iQr j(t))〉 (8.4)

The scattering vector Q is the instrumental parameter to modify the spatial scale 235

probed by the scattering process. 236

From Is(Q,t) one derives by a Fourier transform the displacement distribution 237

function Gs(r, t): 238

Gs(r, t) =
∫

d3Q
(2π)3 exp(−iQr) · Is(Q, t) (8.5)
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It denotes the probability density, that atom (j), which is initially at r0 moves to a 239

position r within a time interval t, averaged over all atoms j: For a classical system, 240

this is equivalent to: 241

Gs(r, t) =
∫

d3r0 p(r0 + r,r0, t) · p0(r0) (8.6)

with the equilibrium distribution 242

p0(r) = p(r,r0, t = ∞) (8.7)

The displacement distribution is defined as the long time value of equ. 9: 243

Gs(r, t → ∞) =
∫

d3Q
(2π)3 exp(−iQr) · Is(Q, t → ∞) (8.8)

The long-time value of the intermediate scattering function is the so-called elastic 244

incoherent structure factor EISF(Q). The displacement distribution is thus the 245

Fourier transform of the EISF(Q), which represents the fraction of the elastic 246

scattering component in the frequency domain at infinite instrumental resolution. 247

Due to limitations of the experimental Q (and time)-range, a direct transform 248

according to (8.11) is rarely possible. Approximations such as a model-independent 249

moment expansion of the G(r, t) can be useful [4] or specific dynamical models, 250

which account for the molecular structure. The experimental elastic fraction is 251

generally convoluted with the resolution function and is thus not identical with 252

the EISF(Q). In the following, we discuss models of the following intermediate 253

scattering function, 254

I (Q, t) = EISF (Q)+ {1−EISF (Q)} ·Φ (t) , (8.9)

which separates the time- and Q-dependence of the spectrum, since for local 255

molecular processes the time correlation function Φ(t) is independent of Q. Also 256

Φ(t→ ∞) = 0. The EISF(Q) contains information on the geometry of the motion, 257

which is a fingerprint of a molecular process. 258

We focus on experiments performed with myoglobin, embedded in three different 259

environments: (a) water: fully hydrated (0.35 g D2O / g protein) (b) vacuum 260

(lyophilized to less than 0.05 g/g) and (c) a glassy perdeuterated glucose matrix, 261

Tg = 325 K. The backscattering spectrometer IN13 (ILL, Grenoble) provides an 262

unusually large Q-range of up to 5 Å−1. Figure 8.7 shows representative scattering 263

data approximating the intermediate scattering function I(Q, t = 50 ps) at fixed time 264

at various temperatures in the three environments. 265

Dehydrated and glassy myoglobin display similar scattering functions, while 266

hydration leads to an additional decrease in the scattering function at high Q.
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Fig. 8.7 Experimental I(Q, τ = 50 ps) of myoglobin in three different environments, vacuum
(dehydrated), vitrified (perdeuterated glucose glass) and D2O-hydrated (0.35 g/g) using the thermal
backscattering spectrometer IN13 at the ILL in Grenoble and fits to a three-fold rotation (methyl
group). The data are corrected for multiple scattering

The data could be well represented by a combination of Gaussian displacements, 267〈
Δx2

trans

〉
and three-fold rotatational jumps according to: 268

EISF(Q) = exp
{−Q

〈
Δx2

trans

〉} ·
[

1− a+
a
3

(

1+ 2 · sin
(√

3Q · r)√
3Q · r

)]

(8.10)

This choice is motivated by the fact that methyl groups in proteins carry almost 269

30% of the total neutron cross-section. This fact is accounted for by the factor 270

a ≈0.27 in 8.13. Figure 8.8a shows the elastic fraction of Fig. 8.7 (hydrated 271

myoglobin) now separating the two components, gaussian and rotational, according 272

to 8.13. In particular the rotational component approximates the EISF(Q) of a three- 273

fold rotation quite well, which is assigned to methyl group torsional transitions. 274

Here the wide Q-range of the back-scattering spectrometer IN13 (at the ILL, 275

France) is quite essential. Also shown in Fig. 8.8 are data from the backscattering 276

spectrometer HFBS at the NCNR, NIST (USA). With such a limited Q-range, no 277

assignments are possible. The interpretation of these data by Roh et al. [22] are thus 278

at best an educated guess. The transition rates are shown in the Arrhenius plot of 279

Fig. 8.8b. Both quantities, the EISF and the torsional rates, are required to establish 280

a meaningful intermediate scattering function. The full lines in Fig. 8.7 represent 281

such fits at fixed resolution time, τΔ , based on the data in Fig. 8.8. 282

To transform the apparent EISF(Q) to the spatial domain (8.8), we approximate 283

the data in Fig. 8.7 by a sum of Gaussian functions. Figure 8.9 displays the resulting 284

displacement distribution functions at various temperatures referring to a fixed 285

instrumental time window of ≈50–100 ps. 286



UNCORRECTED
PROOF

8 Protein Dynamics and Function

ba

Fig. 8.8 (a) Elastic intensity of hydrated myoglobin (IN13) at 300 K, separated into a Gaussian
translational component (line with dots) and a non-Gaussian rotational contribution (open circles,
IN13, ILL) [4] and and EISF(Q) of methyl group rotation with 25% cross-section (solid line),
full circles and triangles: hydrated lysozyme with HFBS according to [22], (b) Arrhenius plot of
methyl group rotation rates, derived from quasielastic spectra (IN5, Grenoble) with dehydrated
myoglobin and alanine dipeptide crystals [21], the full line was derived from elastic scan data
(IN13, Grenoble) on alanine dipeptide crystals

A change in temperature shifts the effective time scale of molecular motions with 287

respect to the instrumental window. At low temperature only vibrational motions are 288

resolved, which implies a Gaussian distribution of displacements with a maximum 289

at r = 0.2 Å. 290

The maximum broadens slightly when increasing the temperature up to 240 K. 291

Then a distinct shift and a further broadening of the peak occurs. This effect 292

originates from small-scale diffusive motions, which become resolved above 240 K. 293

This feature is absent in dry and vitrified samples and belongs to solvent-coupled or 294

class 2 motions. By contrast,the displacements on a scale of 1.5 Å are observed in 295

all three environments above 200 K. On such a scale only proton displacements due 296

to rotational jumps are plausible, which is demonstrated in Fig. 8.9. Thus, rotational 297

transitions of side chains, in particular of methyl groups, in the protein interior are 298

not strongly coupled to the properties of the environment [4]. Torsional transitions 299

of methyl groups occur also in solid environments such as molecular crystals. This 300

component, which represents the solid aspect of structural fluctuations, belongs to 301

class 1. 302

Figure 8.10 shows the temperature evolution of the second moment of the 303

distribution with respect to the three environments. Below 20 K, only zero point 304

vibrations contribute to the displacements (0.014 ± 0.003 Å2), the vibrational 305
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Fig. 8.9 Displacement distribution, 4πr2G(r,t = 50 ps), of hydrated myoglobin at fixed time with
increasing temperature, peak at r = 0.25 Å: vibrational and water-induced librational motions, peak
above 1.0 Å: side-chain rotational transitions

Fig. 8.10 Second moment of the displacement distribution at fixed time in three different
environments, vacuum (dehydrated, open squares), vitrified (perdeuterated glucose glass, open
triangles) and D2O-hydrated (0.35 g/g, full circles) using the thermal backscattering spectrometer
IN13 at the ILL in Grenoble. The data are corrected for multiple scattering
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component follows a coth-function with temperature. The displacements of the 306

vitrified sample are slightly lower than those of the hydrated or dry sample. 307

Anharmonic enhancements become significant above 120 K with all three samples, 308

reflecting rotational (class 1) motions of side chains. The onset is gradual and 309

consistent with an Arrhenius temperature dependence of rotational jump rates as 310

shown in Fig. 8.8b. The assignment to methyl group rotation is facilitated by the 311

observation that the class 1 transition is absent in perdeuterated proteins [23]. Water 312

induces additional translational motions of side-chains, which become relevant 313

above TΔ = 240 K. The onset of water-assisted protein dynamics is abrupt due to a 314

super-Arrhenius temperature dependence of the structural relaxation rate [4,24]. The 315

dynamical transition observed with neutron scattering at TΔ = 240 K for the non- 316

exchangeable protein hydrogens should be compared with the onset of the heme 317

displacements in fig. 6a at TΔ = 210 K in myoglobin crystals. The solvent is water 318

in both cases. Apart from different reporter groups, the spatial scale and the time 319

scale probed by the two methods are quite different. Mössbauer spectroscopy is 320

sensitive to small-amplitude motions of the heme iron, the effective wavevector is 321

Q = 7.2 Å−1, which are faster than about 1 μs. With the neutron back-scattering 322

spectrometer IN13 Qmax = 5 Å−1, and only motions faster than 200 ps are resolved. 323

Assuming that both methods record the same type of solvent-coupled (class 2) 324

fluctuations, the difference in TΔ can be attributed to the different time windows. 325

With neutron scattering, one can clearly detect class 1 motions in proteins: internal 326

processes such as ligand migration between cavities are most likely assisted by 327

rotational transitions of side chains. 328

Class 2 motions apply to lateral motions of the heme in its cleft (Fig. 8.1), water- 329

coupled librations of side chains and ligand entry and exit transitions. One important 330

result of the analysis of the hydrogen displacement distribution is the identification 331

of two distinct molecular processes, associated with rotational transitions and 332

translational–librational motion of side chains. Only the latter depend on the solvent. 333

Another important result is that the corresponding correlation functions are not 334

additive, instead their composition is a product of the following form: 335

I(Q, t) = Irot(Q, t) · Itrans(Q, t,ηs) (8.11)

The heterogeneity of dynamics sites can lead to a sum of Gaussian displacement 336

distributions, which may account for the observed non-Gaussian shape of the 337

EISF(Q). However the non-Gaussian Q dependence persists in the dehydrated case, 338

when the translational component is arrested. The non-Gaussian nature of the 339

dynamic process, which is active also in the dry state, is thus intrinsic. Transitions 340

between distinct sites, such as rotational transitions, are intrinsically non-Gaussian 341

[4]. The addition of water to myoglobin leads to a further decrease in the elastic 342

scattering function (Fig. 8.7 at 300 K), by enhancing the Gaussian factor. Thus only 343

the Gaussian displacements increase due to class 2 motions. This is very different 344

from just adding another process due to a heterogeneity of reporter groups. This 345

striking result suggests, that a dominant single reporter group exists for neutron 346

scattering in proteins, which performs two kinds of motions simultaneously, rotation 347
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and libration–translation. Since the methyl groups in proteins comprise typically 348

25–30% of the incoherent neutron cross-section, one arrives at the remarkable 349

result, the neutron scattering spectra of D2O-hydrated proteins reflect essentially 350

three independent types of motion of the methyl side chains: Vibration, rotation and 351

libration–translation. Only translation is coupled to the solvent (class 2). One could 352

imagine as a plausible model, that the axis of the methyl group moves or the group 353

is translated along with side chain to which it is attached. 354

8.2.3 The Dynamical Transition from Elastic 355

Scattering Experiments 356

The term “dynamical transition” denotes the abrupt onset of class 2 protein 357

structural displacements, which is observed at TΔ , depending on the instrumental 358

resolution Δω [2, 25]. In 1989, two transitions were identified and assigned later to 359

class 1 and class 2. Only the second onset at TΔ = 240 K depends on the degree of 360

hydration. The first onset of anharmonic motion at TΔ∗ ≈ 160–180 K persists even 361

with dry or vitrified proteins as Fig. 8.10 shows. This effect was attributed above to 362

class 1 rotational transitions of side chains [4, 25]. In the following, we introduce a 363

concept of the dynamical transition which unambiguously defines TΔ . We show how 364

dynamic information can be deduced from elastic neutron scattering experiments at 365

a fixed instrumental resolution. A more detailed treatment referred to as “elastic 366

resolution spectroscopy” is presented elsewhere. In this method, the instrumental 367

resolution is varied continuously [26, 27]. 368

Figure 8.11 shows the intermediate scattering function of hydration water of 369

myoglobin. The original data were collected in the frequency domain by subtracting 370

the spectra of H2O and D2O-hydrated myoglobin and a subsequent Fourier trans- 371

form to the time domain [28]. On a short time scale, librational motions of water 372

result in a fast β-process. The second slower decay, the α-process, varies with Q and 373

involves reorientation and translation of water molecules along the protein surface 374

[4, 14]. The time window is limited by the instrumental resolution at τΔ ≈ 12–15 375

ps. At τΔ the correlation function has decayed to a finite value depending on the 376

temperature, I(Q, t = τΔ ) = Iel(T). For longer times there is no further decay 377

observable due to instrumental limitations. The plateau value beyond τΔ appears 378

in the frequency domain as a delta component with elastic amplitude Iel(τΔ ,T)δ (ω). 379

The respective elastic intensity in Fig. 8.11b exhibits a step-like decrease. The 380

associated “dynamical transition” implies that the structural plasticity coupled to 381

this molecular process is fully available beyond τΔ , when Iel is sufficiently small, 382

≈350 K. The term “dynamical transition” is justified only because it refers to a 383

collective structural process, the α-relaxation, which determines the viscosity of the 384

liquid (see 8.4). This is not the case for local processes like rotational transitions 385

of side-chains. Structural arrest on a microscopic scale leads to a macroscopic 386

freezing of the liquid, which turns into a glass. The transition is discontinuous in the 387
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a b

Fig. 8.11 (a) Intermediate scattering function of hydration water, I(Q,t), derived by Fourier
transforming IN6 time-of-flight spectra of hydrated myoglobin (h = 0.35 g/g) [4, 14], (b) Elastic
intensity derived from the value of the intermediate scattering function at the instrumental
resolution time τΔ : Iel = I(Q,t = τΔ )

dynamics, but continuous with respect to the molecular structure. It is a dynamical 388

transition, which depends on the relevant experimental time scale. A liquid, if 389

probed on a short enough time scale, looks like a solid even on a macroscopic scale. 390

Relaxation processes in complex systems are generally non-exponential in 391

time. A very useful model of heterogeneous processes involving a distribution 392

of relaxation times is the Kohlrausch stretched exponential function, which is 393

commonly used to describe dynamics in polymer systems (see for example Chap. 4): 394

Φ (t) = exp
{
−(t/τc)

β
}

(8.12)

where β ≤1 is the stretching parameter. 395

Figure 8.12a shows this function for β = 1 (exponential), 0.5 and 0.35. With 396

decreasing β , the decay broadens, involving both fast and slower components 397

compared to the monoexponential case. However, independent of β , the correlation 398

functions coincide at t = τc, which defines both the time scale and the characteristic 399

temperature of the dynamical transition. The effect of the instrumental resolution 400

function (dotted line) creates a long-time tail, which will cause further stretching 401

in the high temperature tail of the elastic intensity. The elastic fractions in 402

Fig. 8.12b were derived based on the following assumptions: (1) the correlation 403

time τc(T) varies with the temperature according to an Arrhenius law with an 404

activation energy of 17 kJ/mole, a prefactor of 10−13s, and (2) τΔ = 2 ns (for 405

classical reactor backscattering spectrometers like HFBS at NIST, USA, SPHERES 406

at FRMII, Germany or IN16 at the ILL in France). All curves coincide at TΔ 407

independent of β at Iel = 0.368, while the onset temperatures are quite different. 408
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Fig. 8.12 (a) correlation function Φ(t/τc) approximated by a Kohlrausch stretched exponential
with three dynamic exponents β = 0.35, 0.5, 1. (b) Resulting elastic intensity at τΔ = 2 ns,
assuming an Arrhenius law for τc(T ) = A · exp(Ea/RT ) with Ea = 17 kJ/mol and a prefactor
A = 10−13 s. The effect of a Gaussian instrumental resolution is also shown for β = 1 (dotted
line). The arrow indicates the location of the dynamical transition temperature TΔ at τΔ = τc,
independent of β

The dynamical transition temperature is thus defined by TΔ , where τc = τΔ and 409

not by the low temperature deviation from harmonic behavior. The relaxation rates 410

of glass-forming liquids, like those shown in Fig. 8.4, display a super-Arrhenius 411

temperature dependence, which is phenomenologically characterized by a Vogel- 412

Fulcher-Tamman law (VFT): 413

τ−1
c = τ−1

0 · exp{(−H/(T −T0))} , (8.13)

where τ−1
0 denotes a prefactor. H is the high-temperature activation energy [in K] 414

and T0 denotes a critical temperature, where the correlation time reaches infinity. 415

The parameters of VFT-fit are given in [13]. 416

In the context of the ligand transfer rates of Fig. 8.5, it was mentioned that 417

solvent-coupled protein processes are generally slower than solvent relaxation rates 418

due to protein-intrinsic barriers. Also we have emphasized that the viscosity near 419

the protein surface can differ drastically from the bulk value. In the limiting case 420

that the relaxation rate of the bulk solvent coincides with the protein relaxation 421

rate τc ≈ τs, we can deduce from the data in Fig. 8.4 a corresponding dynamical 422

transition at a given instrumental resolution τΔ . This is shown in Fig. 8.13. For β , we 423

adopt the plausible value of 0.5 and we ignore the slight distortions resulting from 424

the shape of the resolution function (see Fig. 8.12a). The curves refer to an elastic 425

resolution of 2 ns except if indicated otherwise. The dynamical transition onsets
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Fig. 8.13 Calculated elastic fraction according to (8.15) and (8.16) using the data in Fig. 8.4. It
was assumed that τc(T) = τs for all solvents. TΔ is defined by the dashed line crossing Iel(T). The
instrumental resolution was set to τΔ = 2 ns, except if indicated otherwise, the full circles refer to
elastic neutron scattering experiments with hydrated lysozyme, τs = 0.1 ns [29]

occur in the observed temperature range, 200–300 K. The dashed line indicates our 426

new definition of TΔ . Hydrated myoglobin and myoglobin crystals, observed with 427

Mössbauer spectroscopy at τΔ = 140 ns, exhibits the lowest onset temperature of 428

200 K. This is quite close to the observed onset, around 200–210 K in Fig. 8.6. 429

While the onset is quite sharp, the transition itself is significantly broader than 430

the calculated one. Also shown is water as the solvent at a resolution of 0.1 ns 431

superimposed with data on hydrated lysozyme, which fits quite well [29]. However, 432

very similar results were obtained with lysozyme in 90–100% glycerol at 0.1 ns, 433

which should be shifted to higher temperatures. This would suggest a lower effective 434

viscosity near the surface than in the bulk. Such a comparison can provide dynamic 435

information about the state of the solvent near the protein surface. 436

To analyse real data one has to account for the vibrational Debye–Waller factor 437

and the EISF(Q) of the relevant process corrected for the finite resolution. 438

Instead of considering the elastic intensities, it is more popular to focus on a 439

derived quantity, the atomic mean square displacements. In [30], a phenomenolog- 440

ical relationship between apparent mean square displacements and the bulk solvent 441

viscosity ηb was suggested: 442

〈
Δx2〉

app ≈ 1/ log(ηb) (8.14)

Neither the EISF nor the instrumental resolution were explicitly taken into account. 443

With the analysis based on (8.15) and (8.16), we can test this relationship starting
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from the intermediate scattering function of (8.12). For this purpose, it is sufficient 444

to consider the low-Q range, since the displacements were derived assuming a 445

Gaussian approximation. Second, we are essentially interested in the onset of 446

anharmonic motion. This is the regime, where the structural relaxation time is 447

still smaller than τΔ , typically by a factor of 5 [4]. Expanding both, the Gaussian 448

EISF(Q) at small Q is then: 449

EISF(Q → 0)≈ 1−Q2 · 〈Δx〉trans (8.15)

and the stretched exponential at t = τΔ 
 τc yields: 450

Φ(t = τΔ )≈ 1−
(

τΔ
τc

)β
(8.16)

which together with: 451

I(Q → 0, t = τΔ )≈ 1−Q2〈Δx2(τΔ )
〉

(8.17)

yields: 452

〈
Δx2〉

τΔ
≈ 〈

Δx2
trans

〉
(

τΔ
τc

)β
=

C

ηβ (8.18)

The second equality of (8.21) assumes the Maxwell relation between solvent 453

relaxation rate and bulk viscosity: τc ∝ η . Equation 8.21 is certainly quite different 454

from the one proposed above with equ. (8.17) [30]. 455

Figure 8.14 shows the analysis of real elastic scattering data in the present 456

context. To emphasize the contribution of water, a perdeuterated protein phy- 457

cocyanin, hydrated with 0.3 g/g H2O was investigated with the back-scattering 458

spectrometer SPHERES at τΔ ≈ 2 ns [31]. The data are roughly compatible with 459

the dashed line (W) in Fig. 8.13. A complete analysis requires to account for the 460

harmonic component as well as for the EISF(Q), the step height of the transition. At 461

TΔ = 255 K, the correlation time of water τc equals the resolution time τΔ ≈ 2 ns. 462

The various curves refer to different values of the exponent β and correspondingly, 463

different activation energies of the assumed Arrhenius law. The full line represents 464

the choice of β = 0.5, an activation energy of 4000 K (dotted 4200 K) and the 465

preexponential of 10−15s. Assuming β = 0.35, one obtains instead H = 7600 K and 466

a preexponential of 10−22s. These differences emphasize the important influence 467

of the relaxation time distribution on activation parameters. For a given β , one 468

can derive relevant dynamic information from the transition curve. To investigate 469

Iel(Q,T) directly it is better to start with derived mean square displacements. 470

So far we have only discussed the effect of the main structural relaxation (α) 471

on the elastic scattering intensity. The intermediate scattering function in Fig. 8.11 472

shows however a two-step decay. The rate of the fast component varies little with 473

temperature and momentum exchange Q. Only its amplitude increases with the
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Fig. 8.14 Analysis of elastic neutron scattering data of perdeuterated phycocyanin hydrated with
0.3 g/g H2O and fits to the stretched exponential model. The value of TΔ is indicated. The nominal

energy resolution was 0.65μeV and the data refer to Q = 1.5Å
−1

. The experiment was performed
with the back-scattering spectrometer SPHERES at the FRMII facility in Munich [31]

.

temperature above Tg. To emphasize its local nature, we call it the “fast β-process”. 474

The increase of the β-amplitude above Tg gives rise to a first onset in the mean 475

square displacements at about 180 K, which is displayed in Fig. 8.15. Since the 476

β-correlation time ≈1 ps is always shorter than the resolution time of current 477

spectrometers, independent of the temperature, there is no effect of the chosen time 478

window of observation on the apparent displacements. Analysis of high-frequency 479

vibrational spectra of the hydrogen bond network suggests that the β-process 480

originates mainly from fast hydrogen bond fluctuations of water molecules in the 481

cage of nearest neighbours, bonded either to other water molecules or polar protein 482

residues [14]. Figure 8.15 compares the displacements of protein hydration water 483

observed for two time windows of τΔ = 2 ns and 15 ps. The first onset is independent 484

of the instrumental resolution, while the second onset shifts with decreasing time 485

window to higher temperatures. The second onset at TΔ , originates from collective 486

structural fluctuations giving rise to the α-process. The α-time scale increases 487

strongly with decreasing temperature. This is the reason, why the second onset at 488

TΔ depends on the observation time scale, τDelta. 489

Since protein class 2 displacements are tightly coupled to the water of hydration, 490

protein motions also display a two-step decay in their density correlation function 491

on the same time scale. This two-step scenario was developed in the original 492

analysis of hydrated myoglobin with neutron- time-of-flight and back-scattering 493

spectroscopy [2]. 494
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Fig. 8.15 Mean square displacements of protein hydration water from elastic intensities, triangles:
myoglobin, data from Fig. 8.11b at 15 ps (time-of-flight spectrometer IN6 at the ILL), circles:
perdeuterated c-phycocyanin, H2O-hydrated, 0.3 g/g at 2 ns (SPHERES, FRMII Munich), and
thermal expansion of hydration water (myoglobin) derived from the O-H stretching vibration. The
glass temperature Tg and the resolution dependent onset of the α-process, TΔ are indicated [14,31]

8.2.4 Conclusion on Protein-Internal Structural Motions 495

and Biological Function 496

The main conclusion of the first part of this chapter is the discrimination of class 497

1 and class 2 processes according to their coupling to the solvent. Intercavity 498

migration of the ligand belongs to class 1 as well as the rotational transition of 499

internal side chains. The ligand transfer across the protein–solvent interface and 500

translational motion of surface side-chains are coupled to the solvent and belong 501

to class 2. The main dynamic coupling parameter is the solvent viscosity at the 502

protein surface ηs which can be different from the bulk value. Even small globular 503

proteins can thus provide a unique chemical environment, which is also dynamically 504

isolated from the solvent. Even though the heme group, the active site of myoglobin, 505

performs translational motions, which are modulated by the external solvent, the 506

binding of the ligand to the heme iron is a class 1 reaction. One of the unsolved 507

puzzles of the field is that the final binding reaction B→A is always polychromatic 508

and independent of the solvent [32]. 509

A distribution of activation enthalpies, reflecting the conformational heterogene- 510

ity of the protein structure was invoked, but the molecular origin of the disorder 511

is still obscure. In [5], it was suggested that the sliding motion of the heme in its 512

cleft, modulates the effective force on the heme iron, which is covalently attached 513

to the imidazole side chain of His F8. This effect also modulates the barrier of 514
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Fig. 8.16 Normalised distribution function of activation energies referring to elementary steps of
the CO-binding kinetics to horse myoglobin. B, C and S denote the partial enthalpy distributions
of rebinding from the respective docking sites to final state A according to the four state model and
Fig. 8.1 [13]

B→A when the covalent bond between heme iron and CO is formed. If the crossing 515

of the barrier at the heme site occurs on a time scale that is faster than the 516

visco-elastic sliding, an apparent static distribution of barrier heights will result. 517

The above analysis indicates, that the structural relaxation of the solvent is the 518

main factor that determines the rate of heme sliding. It follows that the observed 519

barrier distribution should change significantly, when the rate of visco-elastic sliding 520

becomes comparable to the rate of covalent bond formation at the heme iron. In the 521

case of CO-myoglobin in 75% glycerol-water, the crossover takes place between 522

210 and 220 K, where the solvent relaxation rate ks(T) becomes comparable to the 523

rebinding rate kBA at about 106 s−1 (Figs. 8.3 and 8.4). Figure 8.16 shows, that the 524

activation enthalpy spectrum of B→A is constant between 100 and 200 K. However, 525

above 200 K the B-distribution shifts towards higher values, suggesting relaxation 526

to a new product state B*→B [33]. This suggests, that heme sliding does affect the 527

rate of bond formation. However, the distribution does collapse to a delta-function. 528

The C- and S- distributions change in relative weight with respect to B, as a result 529

of the temperature dependent population of kinetic states. In particular the escape 530

fraction Nout increases with the temperature above 200 K. 531

In the second part of the chapter, a more precise definition of the dynamical 532

transition is suggested. We start from the time domain with a distribution of 533

relaxation times and switch to the frequency domain by defining the elastic intensity 534

as the long-time value of the intermediate scattering function limited by the
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resolution of the spectrometer. The dynamical transition is thus defined by the 535

temperature, where the elastic intensity has decreased to its 1/e value. This value is 536

independent of the detailed relaxation time distribution, while the onset temperature 537

is strongly affected by the shape of the spectrum. This concept allows to test various 538

coupling models, for instance whether the solvent relaxation rate τs of various 539

solvents equals the protein structural relaxation rate τc. 540

Several misconceptions exist about the nature and the mechanism of the dynam- 541

ical transition and its relation to the glass transition [14, 25]. It is often claimed 542

that the dynamical transition can be suppressed by vitrifying the protein in a glassy 543

matrix [23? ]. WhileAQ5 class 2 motions can be entirely suppressed at infinite external 544

viscosity, class 1 motions (and the related anharmonic onset) are active irrespective 545

of the environment (see Fig. 8.9). One likely origin of the discrepancy derives from 546

the fact that the glassy matrix dominates the elastic scattering function unless it is 547

perdeuterated. In Figs. 8.7–8.10 a perdeuterated glucose matrix was used. Also the 548

work of Tsai et al. [34] on lysozyme in glycerol (see figure 11.3 in the Chapter of 549

Wood and Weik) is in strong contradiction with Paciaroni et al. [29]. While Tsai 550

et al. derive an onset temperature of 388 K, the onset in 90–100% glycerol occurs 551

at 240 K as Fig. 8.13 shows. The dynamical transition is certainly not related to 552

an energy landscape or a molecular resilience [23]. Instead it reflects the activation 553

energy spectrum of molecular processes probed by a spectrometer on a finite time 554

window. It does not even make sense to ask, what is actually “driving” the dynamical 555

transition, protein motions, rotation or translation of water molecules. There is no 556

driving force, just collective fluctuations of the protein-water system, that will be 557

structurally arrested at the glass transition. The glass transition, which implies by 558

definition the freezing of translational motions on a macroscopic time scale of 100 559

s, occurs at about 170 K for the protein-water system. At Tg = TΔ(100 s), however 560

the protein-water systems starts to soften due to an increasing amplitude of fast 561

hydrogen bond fluctuations. On a molecular scale, the coupling mechanism between 562

protein and its solvation shell is the hydrogen bond network. A molecular transfer 563

necessitates the simultaneous breaking of several hydrogen bonds. Fluctuations at 564

this basic level may be considered as the main driving force of the dynamical 565

transition [14, 24, 35]. 566

8.3 Global Diffusion of Macromolecules 567

8.3.1 Dynamic Light Scattering of Colloids 568

As early as 1908 and 1910, with the works of Smoluchovsky and Einstein, 569

respectively, it was clear that density fluctuations in condensed matter lead to local 570

inhomogeneities that could scatter beams. The progress of such studies was slow 571

due to the unavailability of high intensity light beams, until the introduction of the 572

laser at the beginning of 1960s. Then began an intense activity on experimental 573
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studies on colloidal systems by dynamical light scattering (DLS) together with 574

theoretical papers aiming at the interpretation of the experimentally measured 575

quantities. Phillies [36, 37] introduced the generalized Stokes–Einstein relaxation 576

that determines the mutual diffusion coefficient measured by DLS: 577

Dm =
(1−Φ)

f

(
∂π
∂c

)

P,T
(8.19)

where −1
c (∂π/∂c)−1 is the osmotic compressibility of the solution, Φ the hydro- 578

dynamic fraction of the molecules in solution and f is a friction coefficient. This 579

diffusion coefficient being extracted from the pair-correlation function is different in 580

nature from the self-diffusion coefficient measured by, for example, tracer diffusion 581

experiments: Ds. For very low concentrations, the interactions between molecules 582

can be neglected and Ds and Dm are equal to Do the diffusion coefficient of a 583

unique macromolecule in a solvent (0 refer to zero concentration). Do given by 584

the Einstein’s law : Do = kBT/ f where T is the temperature in K, kB the Boltzmann 585

constant and f is a friction term that Stokes has shown equal to be equal to 6πηR for 586

a sphere of radius R in a continuous solvent of viscosity η . When the concentration 587

of macromolecules in solution increases, the interactions cannot be neglected and 588

Dm(Φ) begins to be significantly different to Ds(Φ) and D0. Moreover and adding 589

to the different nature of the diffusion coefficients, one should distinguish between 590

temporal regimes. One usually introduces three time domains: (1) t 
 τB with τB 591

is the time the correlation of the velocity needs to relax, that is, the necessary 592

time to reach a Brownian regime for the macromolecules; (2) for τB 
 t 
 τi 593

(τi) is the time needed by the particle to interact with its neighbors) one defines a 594

short time diffusion coefficient: the macromolecules only experience hydrodynamic 595

interactions; and (3) in the time domain t � τi, we observe the diffusion of the 596

particle in solution, the hydrodynamic and direct interactions are established and 597

we define a long time diffusion coefficient. 598

In the short time regime, memory effects can be neglected and the dynamical 599

functions can be expressed as a function of the equilibrium distributions; the theory 600

is now relatively complete [38–40]. Ackerson has derived a relation for the apparent 601

diffusion that can be split into contributions from the direct and hydrodynamic 602

interactions: 603

D = D0
H(Q)

S(Q)
(8.20)

Beenakker and Mazur [41, 42] have calculated the hydrodynamic factor, H(Q) 604

for solutions of concentrated hard spheres. In particular, they have shown the 605

characteristic wave vector dependance of H(Q) for different volume fractions Φ . 606

The theoretical predictions for H(Q,Φ) can be compared to experimental results. 607

The dependence of the self-diffusion coefficients at short and long times, 608

Ds
s and DL

s , on the volume fraction, cannot be calculated exactly, but several
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theoretical approximations have been introduced. Some authors have decoupled 609

the contribution from hydrodynamic and direct interactions, as Beenakker and 610

Mazur [41, 42]. Médina–Noyola [43] introduced a way of calculating DL
s from 611

Ds
s and the structure factor S(Q) of the solution. Tokuyama and Oppenheim [44] 612

have developed a more systematic way of calculating Ds
s and DL

s that includes both 613

hydrodynamic and direct interactions for hard sphere solutions. 614

The structure of charged particles in solution was studied theoretically by Hayter 615

and Penfold [45], who derived an analytical structure factor for charged spheres 616

interacting with a screened electrostatic potential. This theory (Mean Spherical 617

Approximation) can be applied at rather small global macromolecular charges if 618

the particle concentration is not too high, and if the contribution of counterions 619

to the scattered intensity can be neglected. The latter only affects the screening 620

of the Coulombic potential by reducing the Debye length. The potential no longer 621

decreases with 1/r but rather with a Yukawa-type function. Hansen and Hayter [46] 622

introduced a renormalization method of the effective radius of the particle in order 623

to extend the theory to low concentration of highly charged colloids. In such a case 624

the contact potential is much higher than kBT , and thus the contact probability of 625

the particles is almost zero g(r > 2a) � 0. The hard sphere potential doesn’t play 626

a physical role. Their method involves rescaling the radius of the particle. Finally 627

in 1986, Belloni [47] included the colloidal concentration in the calculation of the 628

Debye length and thus the screening of the electrostatic forces. 629

8.3.2 Protein Structure Factor and Diffusion 630

The cytoplasm topology directly influences protein diffusion. Beyond transport 631

mechanisms, the kinetics of a biochemical reaction will be affected by the mobility 632

reduction, which can become diffusion limited inside the complex interior of cells. 633

The transport inside cells can generally be divided into three types : 634

1. The active transport which requires energy (ATP hydrolysis). 635

2. Simple diffusion (or Brownian) in which the mean-square displacement of the 636

molecules is a linear function of time : 〈r2〉 � Dt. 637

3. Anomalous diffusion, in contrast to simple diffusion, in which the mean-square 638

displacement of the molecules is NOT a linear function of the time : 〈r2〉 � 639

Dtα . It can be subdiffusive (α < 1) and superdiffusive (α > 1), the former being 640

mostly encountered in cells. 641

It is now widely accepted that the dominant mechanism is diffusion [48] (non- 642

active transport), although there is one group suggesting a combined transport in 643

the nucleus [49]. The nature of the diffusion process (Brownian or non-Brownian) 644

still remains a matter of discussion. In what follows, only diffusive transport will be 645

discussed because neutron scattering is probably less suited for studying activated 646

transport. 647
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The motion of a particle, at infinite dilution and in the absence of field, can be 648

described by a random walk, which leads to: 649

〈r2〉= 6Dot, (8.21)

where 〈r2〉 is the mean square displacement of the particle during a time τ . The 650

presence of other macromolecules in the cytoplasm will strongly modify the value 651

of Do, which is dependent on the excluded volume (the space which is physically 652

not accessible to the center of mass molecule due to the presence of others). For a 653

total macromolecular volume fraction Φ of the order of that present in the cytoplasm 654

(Φ � 0.3− 0.4), the diffusion coefficient Ds(Φ) can be reduced by more than one 655

order of magnitude. A significant number of experimental and theoretical studies 656

aim to measure and understand the mechanisms that lead to the reduction in Ds(Φ). 657

As mentioned before, this problem is very complex because one single diffusion 658

coefficient at infinite dilution is replaced by a number of different ones at higher 659

crowding fractions. 660

The discovery of fluorescence proteins, such as the Green Fluorescence protein 661

[? ], togetherAQ6 with improvements in imaging technology, has allowed the study 662

of protein diffusion inside cells. Fluorescence techniques [50] like FRAP [51] 663

(fluorescence recovery after photobleaching), FRET (fluorescence resonance by 664

energy transfer) and FCS (fluorescence correlation spectroscopy), complement 665

those usually used to study molecular diffusion (DLS, NMR, tracer methods ..) in 666

vivo. All these methods probe the diffusion of molecules over distances typically 667

of the order of the cell size or smaller, but in any case much higher than the inter 668

molecular distances. In contrast, neutron scattering allows the study of interactions 669

and molecular motions over typical protein–protein distances in protein solutions 670

and in cells. Thus, we can test models developed to describe the statics and 671

dynamics of micellar and colloidal suspensions. These objects generally have a size 672

significantly higher than proteins where the first interaction peak can be probed by 673

light scattering. 674

8.3.3 Protein Structure Factor 675

Proteins in solution with their well-defined tertiary structure provide an excellent 676

model system to study the interaction of simple charged molecules. Polydispersity 677

arises only from protein aggregation and not from distributions in particle size. For 678

some proteins, aggregates can be avoided under certain biochemical conditions or 679

eliminated by centrifugation of the solution. 680

The first attempt to study the structure and interparticle interactions in protein 681

solutions using the analysis of Hayter and Penfold [45] was performed on Bovine 682

Serum Albumin (BSA) in 1983 [52]. BSA is a prolate ellipsoidal-shape protein 683

(a,b,b) with a = 70 Å and b = 20 Å, thus the analysis of the data were performed 684

using a form factor of an ellipsoid with a structure factor calculated for equivalent 685
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charged hard sphere. Later the same analysis was performed on hemoglobin inside 686

red cells [53] and in solution [54], a protein that has a nearly spherical shape and 687

therefore leads to more satisfactory results. 688

Hayter and Penfold [45] calculated the structure factor of a colloidal solution 689

that experiences an interaction potential composed of a hard sphere part plus an 690

electrostatic tail using the Mean Spherical Approximation (MSA). Mathematically, 691

the electrostic tail follows a Yukawa-type function βV (r) =Vi j(2r0)2r0
e−κ(r−2r0 )

r for 692

r > 2r0 and V (r) = ∞ for r < 2r0. β = 1/kBT and Vi j(2r0) is the contact potential 693

which depends on the global protein charge Zp. κ is the inverse of the Debye length 694

LD, which reflects the screening of the potential due to counterions in solutions. 695

The neutron scattered intensity by a solution of monodisperse macromolecules 696

in solution with a spherical symmetry can be described 697

I(q) = Φv0(Δρ)2F2(Q).S(Q), (8.22)

where Φ is the volume fraction occupied by the macromolecules, v0 their volume, 698

Δρ is the scattering length density difference between the solvent and the macro- 699

molecules (in cm−2), F(Q) is the form factor of the particle and S(Q) denotes the 700

interparticle structure factor. The form factor of the protein can be measured at very 701

low concentration where S(q)∼1, and it is then possible to access to the structure 702

factor by a simple division of the scattered spectra by the form factor at each protein 703

volume fraction. The spectra are then refined using the calculated structure factor of 704

Hayter and Penfold [45] or with the corrections introduced by Belloni [47]. The free 705

parameters of the refinements are the volume fraction Φ , the radius of the protein 706

r0 and the net protein charge Zp. The Debye length is generally computed from 707

the ionic strength of the solution and is implemented in the model. For myoglobin 708

solutions [55] one gets r0 � 16 Å and Zp � 2e for each volume fraction, the radius is 709

a little bit smaller than the real hard sphere radius of the protein but the small charge 710

is compatible with the fact that the protein is at high concentration and will impose 711

the pH of the solution close to its isoletric point. 712

For hemoglobin solutions [53, 54] the experimental results can be satisfactory 713

compared to theoretical calculations, although the volume fraction extracted from 714

the analysis is slightly lower than the real ones, which has been interpreted as being 715

due to the limited aggregation of the hemoglobin tetramers in solution. 716

8.3.4 Protein Diffusion as a Function of the Concentration 717

The first step to understanding the physical mechanism that leads to the mobility 718

reduction in crowded media is to look at the evolution of the diffusion coefficient 719

of a protein solution of as a function of the concentration. Riveros-Moreno and 720

Wittenberg have measured the concentration dependence of the self-diffusion 721

coefficient in myoglobin and hemoglobin solutions [56] up to volume fractions 722
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of Φ � 0.2 and Φ � 0.26, respectively. They found, a plateau at low protein 723

concentration followed by an exponential decrease of Ds down to more than one 724

order of magnitude at higher protein concentration. Alpert and Banks [57] showed 725

that the mutual diffusion coefficient Dm, measured by dynamical light scattering, 726

has a much weaker dependance then the self-diffusion coefficient Ds. This was 727

soon confirmed by Hall et al. [58] who compared the self- and the mutual-diffusion 728

coefficient evolution as a function of the concentration in hemoglobin solutions. The 729

self-diffusion coefficients are long-time ones because the techniques used for the 730

measurements probe the diffusion process over much longer than the intermolecular 731

ones. 732

The analysis of the diffusion properties of proteins using a combined approach 733

by SANS or small-angle X-rays scattering (SAXS) to get the structure factor, 734

and neutron spin-echo spectroscopy (NSE) to obtain the apparent diffusion co- 735

efficient has been performed by different authors. On the one hand, myoglobin 736

and hemoglobin solutions were studied [3, 4, 55, 59, 60] motivated by the aim to 737

understand whether protein dynamics could be described by models developed 738

for colloids and if protein diffusion can assist oxygen diffusion. On the other 739

hand, experiments were performed on Ferritin solutions, to study the dynamics 740

at high concentrations where paracrystalline order occurs [61, 62], to study the 741

hydrodynamic interactions in perfectly monodisperse spherical macromolecular 742

solutions [63], or more recently to study diffusive dynamics in solution [64]. 743

Neutron spin echo spectroscopy gives access to full intermediate scattering 744

function S(Q, t): 745

S(Q, t) =
1
N

〈
N

∑
i, j

bib je
−iQ.[ri(0)−r j(t)]

〉

, (8.23)

where i and j run over all the scattering centers N, of respective scattering lengths bi 746

and b j and position ri(0) at time t = 0 and r j(t) at time t. In the wave vector range 747

2π/Q � d (where d is the average distance between two scattering centers), usually 748

referred to as the small angle limit, the intermediate scattering function of a solution 749

of almost spherical macromolecules in solution, reads: 750

S(Q, t)
Φvp(Δρ)2F2(Q)

� 1
N′

〈
N′

∑
i, j

e−iQ.[ri(0)−r j(t)]

〉

(8.24)

where Φ is the volume fraction occupied by macromolecules of volume vp, i and j 751

run over all the molecule centers N’ whose positions are ri(0) at time t = 0 and r j(t) 752

at time t, respectively. F(q) is the form factor and Δρ is the scattering length density 753

contrast between the macromolecules and the solvent. The normalized intermediate 754

scattering function I(Q, t) = S(Q,t)
S(Q) obtained for myoglobin solutions are presented 755

in Fig. 8.17. 756
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Fig. 8.17 Intermediate scattering function I(q,t) measured on the spin echo spectrometer G1bis
(Laboratoire Léon Brillouin, Saclay, France) on myoglobin solution of protein volume fraction
Φ � 0.2

There is no significant departure from a single relaxation decay whatever the 757

concentration of the solution. We can consequently extract a wavevector-dependent 758

diffusion coefficient by refining the curves using the relation: 759

I(Q, t)∼ e−D(Q)Q2t . (8.25)

Figure 8.18 shows the evolution of the apparent diffusion coefficient D(Q) as a 760

function of the wave vector for three different protein concentrations. Independent 761

of protein concentration, the wave vector evolution of D(Q) is similar, an increase 762

at low-wave vector and a plateau at high Q. The extrapolation of D(Q) to Q = 0 763

leads to the mutual diffusion coefficient measured by light scattering Dm, whereas 764

the value of the plateau corresponds to a self-diffusion coefficient Ds. The plateau is 765

observed in the wave vector range where S(Q)∼ 1 which generally corresponds to 766

the incoherent approximation of coherent scattering. In this Q range, a small change 767

in the position of the proteins, ri(0)− r j(t) will induce a strong variation of the 768

phase term Q.[ri(0)− r j(t)] and the cross term i �= j of (8.24) will vanish leaving 769

only the self-correlation term. 770

8.3.4.1 Concentration Dependance of the Self-Diffusion Coefficient 771

The concentration dependence of the self-diffusion coefficient Ds(Φ) obtained for a 772

myoglobin solution is shown in Fig. 8.19. The theoretical calculation by Tokuyama 773

and Oppenheim [44] for the short- and the long-time self-diffusions for a hard sphere 774

solution are also shown in the figure. 775
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For globular proteins like myoglobin, the Brownian time can be estimated using 776

τB � M
f = M

N
Do

kBT � 10 ps. The interaction time can be estimated in one of two 777

ways: (1) some authors [65] define it as the time necessary to diffuse by a distance 778

equal to its own hydrodynamic radius such that τi � a2

Do
� 30 ns, where a is the 779

hydrodynamic radius of the protein. This calculation, which is not dependent on 780

the quantity of protein in solution, holds for moderate concentrations but can differ 781

significantly at high values of Φ; (2) assume that it corresponds to the time necessary 782

to diffuse over the mean surface to surface distance of two proteins, which is clearly 783

concentration dependent. Thus τi � 2 d2

Do
with d = a

(
4π
3Φ

1/3 − 2
)

. This leads for Φ � 784

0.2 an interaction time τi � 34 ns very similar to the first estimation, but decreases 785

down to τi � 1 ns for Φ � 0.4. Nevertheless, this interaction time remains a rather 786

crude approximation, because, for example, the diffusion coefficient which is used 787

for the calculation should not be the infinite dilution one Do but rather the short 788

time one which depends on the concentration. The relaxation times measured in 789

myoglobin solutions extracted from the Fig. 8.17 are of the order of 1 ns, which 790

falls in between the Brownian and the interaction time. The measured diffusion 791

coefficient should consequently experience only hydrodynamic interactions. Under 792

these conditions, it is a short time diffusion coefficient sDs(Φ). In Fig. 8.19 the 793

refinement of the diffusion coefficients measured by tracer methods [66], which by 794

definition corresponds to the long time limit, is represented by a continuous black 795

line. The correspondence between our NSE data and the value lDs(Φ) is rather 796

good. To understand which type of diffusion coefficient we are indeed measuring 797

(short- or long- time), it is interesting to compare the theoretical results. Also added 798
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Fig. 8.19 Self-diffusion diffusion coefficients of myogoblin solutions measured by neutron spin-
echo of myoglobin solutions as a function of the concentration (Full circle), best refinement of the
long-time self diffusion coefficient measured by tracer methods (full line), theoretical calculation
for short- (dot) and long-time self diffusion coefficient obtained by Tokuyama and Oppenhein [44].
The full squares are the neutron spin echo results after including the water hydration shell in the
calculation of the hydrodynamic volume (see text)th
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in figure 8.19 are the results of the computation of Tokuyama and Oppenheim [44] 799

for the short- and the long-time diffusion coefficients for hard sphere solutions. Our 800

results together with the ones obtained by tracer methods are significantly lower 801

than the theoretical predictions also for the long-time diffusion coefficient. In what 802

follows, we try to explain this discrepancy. In 1977, Ross and Minton [67] noticed 803

the need to include the volume of the hydration water shell in the computation of the 804

hydrodynamic volume, in order to describe the viscosity of hemoglobin solutions by 805

a hard quasi-spherical model. To compute the volume fraction on Fig. 8.19, we used 806

the protein concentration (determined with a high precision by UV absorption) and 807

the specific volume of the protein as vp � 0.741 cm3.g−1: this corresponds to the 808

dry volume fraction of the protein. The full squares in Fig. 8.19 are the spin echo 809

results where the dry volume was replaced by the hydrodynamic one by using Φh = 810

cpvh with vh = vd + δvs. vs is the specific volume of the solvent and δ (0 ≤ δ ≤ 1) 811

is the weight fraction of the hydration shell contributing to the volume, which is 812

commonly assumed to be δ = 0.35. There is a quite good agreement between the 813

experimental results and the calculation of Tokuyama and Oppenheim [44] for the 814

long-time diffusion coefficient for hard sphere solutions, which supports the idea 815

that the self-diffusion coefficient measured by spin echo is a long-time one.AQ7 816
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Fig. 8.20 Intermediate scattering function I(Q= 1Å
−1

, t)measured on the spin echo spectrometer
G1bis (Laboratoire Léon Brillouin, Saclay, France) on hemoglobin solution of protein volume
fraction Φ � 0.25 (circle) and on water (square). The contribution of the protein is proportional to
its ratio of protons in solution and is represented as the dot curve

8.3.4.2 Search for the Short-Time Diffusion Coefficient 817

In hard sphere suspensions at high volume fraction (Φ � 0.4), it was shown by the 818

time evolution of the mean square displacement that particles typically achieve their 819

asymptotic long time behaviour after diffusing over distances equal to only a few 820

tenths of its diameter [68, 69]. In protein solutions, at slightly lower concentration 821

(350 mg.ml−1), one expects to observe the transition from long-time to small- 822

time behaviour at high wavevectors. the mixture of coherent and spin incoherent 823

scattering leads to a strong decrease of the scattered beam polarisation, which is 824

highly unfavourable for NSE measurements. Therefore, such measurements must 825

be performed on fully incoherent samples (H-protein in H2O). Figure 8.20 shows 826

the intermediate scattering function of a hemoglobin solution (Φ � 0.25) and that 827

of pure water at q = 1Å
−1

. The protein contribution is proportional to the ratio 828

of the number of hydrogens in the protein with respect to the total number in 829

solution, which can be estimated around � 25%. A clear signature of the protein 830

can be separated from the water contribution, which is represented by the dotted 831

curve. The apparent diffusion, which can be extracted from the signal is Dapp
mes = 832

14.9(±3) ∗ 10−7 cm2s−1, and is more than twice the Stokes–Einstein one at low 833

concentration, which should normally be the highest limit for both DL
s and DS

s . 834

It is thus necessary to introduce an additional dynamical phenomenon to explain 835

this relaxation time. Proteins undergo aleatory rotational motions, referred to as 836

rotational Brownian motions which are similar in nature to the translation ones. 837

Their physical origin is an aleatory torque which results from unbalanced collisions 838
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of the solvent molecules with the protein. At high momentum transfer, these motions 839

will contribute to the translational one as an additional term D̃r � R2
gDr. Taking the 840

values given in the literature [70] and assuming that for a solution of concentration 841

∼350mg.ml−1 one gets Ds
s � D0

s/2 (corresponds to the theoretical predictions), we 842

get a new apparent diffusion coefficient Dapp = D̃r
rbc + Ds � 6.2 ∗ 10−7 cm2.s

−1
843

which remains much below the measured one. Thuis the relaxation phenomena 844

which are measured by NSE probably differ in nature from a Brownian motion. 845

Most likely this effect originates from internal motions of the protein [71]. 846

8.3.4.3 Wave Vector Dependence of D(Q) 847

As was seen in Fig. 8.18, the wavevector dependence of the apparent diffusion 848

coefficient is always the same whatever the protein concentration is solution. This 849

behaviour is characteristic of the collective nature of D(Q). In molecular liquids 850

the interactions arise from direct forces. In 1959, P.-G. de Gennes calculated a 851

relationship between the second moments of the coherent and incoherent scattering 852

peaks [72] : ω2
coh = ω2

inc/S(Q). In colloidal or protein solutions, we have to account 853

for additional interactions mediated by the solvent namely the hydrodynamic 854

interactions, which appear in relation 8.3.1. In the limit of zero scattering wave 855

vector, this value must lead to the one measured by light scattering. It is weakly 856

dependent on the protein concentration because the increase of the friction value is 857

partially compensated by the strong variation of the osmotic compressibility. When 858

the scattering wave vector increases, the structure factor increases, which accounts 859

for the decrease of D(Q). Formally equation 8.3.1 is only valid in the limit of short 860

times, when the neighboring molecules can be considered as immobile. This means 861

that the diffusion coefficient is the one measured at short times. But we have shown 862

that we only have access to the long-time diffusion coefficient DL
s , and not DS

s , which 863

would exclude any possibility to compute the hydrodynamic factor H(Q). The top 864

panel in figure 8.21 plots the product D(Q) ∗ S(Q)/Do deduced from the neutron 865

scattering data. In accordance with the theoretical predictions for H(Q) [42], this 866

product oscillates in phase with the structure factor, and after renormalisation by a 867

constant in order to account for the difference between the short- and long-time 868

diffusion coefficient the agreement between experimental results and theoretical 869

results is satisfactory. P. Segrè and P. Pusey showed a similar relation between the 870

short- and long-time apparent diffusion coefficient, DS(Q) and DL(Q), in colloidal 871

suspensions up to volume fractions of 30% [? ]. This observation has currently 872

no theoretical explanation, but Fig. 8.21 tends to indicate a strong contribution of 873

hydrodynamic interactions in protein mobility.AQ8 874

8.3.4.4 Measurements Inside Cells 875

The measurement of hemoglobin diffusion inside red blood cells (RBC) is not 876

straightforward. Dynamic light scattering is dominated by membrane fluctuations 877
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Fig. 8.21 Apparent diffusion coefficient, structure factor and product D(Q) ∗ S(Q)/Do obtained
for myoglobin solution at a concentration of 14.7 mM (Φ � 0.2)

[73], whereas NMR measures protein motions over hundred of nanometers where 878

cell confinement effects can become important [74, 75]. Krueger an Nossal [53] 879

have used neutron scattering to study the structure factor of hemoglobin solutions 880

inside red blood cells. They have especially shown, using contrast matching, that 881

the membrane and hemoglobin contributions occur at different length scales and 882

although membrane scattering can not be eliminated stricto-sensus because of 883

its inhomogeneity (the membrane contains lots of different protein) both signals 884

can be easily separated. The dynamics of hemoglobin was studied inside red 885

blood cells by neutron spin-echo spectroscopy [3] and more recently using time- 886

of-flight spectrometry [76]. For contrast reasons, the first study was performed 887

using red blood cells, which have been dialysed against D2O, at the physiological 888

temperature of 37◦C from Q ∼ 0.02Å
−1

to Q ∼ 0.13 Å
−1

. This wave vector range 889
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surrounds the protein structure factor maximum, which means, that it ranges from 890

typically intermolecular distances up to few tens of nanometers. The results can be 891

summarised as follows [3]: 892

• The diffusion coefficient of hemoglobin in the red blood cells is equal to Ds = 893

1.75(±0.2).10−7cm2.s
−1

, in heavy water and at T = 37◦C. When corrected for 894

temperature and the viscosity difference between H2O and D2O, this leads to an 895

equivalent of Ds = 1.1(±0.2).10−7cm2.s
−1

in water at T = 20◦C. 896

• The diffusion of hemoglobin at high concentration can be understood on the basis 897

of theoretical concepts developed for colloidal suspensions. The main difference 898

is that the effective hydrodynamic volume fraction of the protein must include the 899

hydration shell because of the highest surface over volume ratio of the proteins. 900

• The protein–protein friction in the RBCs is mainly controlled by hydrodynamic 901

interactions. This conclusion is based on the wave vector dependence of the 902

apparent diffusion coefficient, and cannot be deduced only from the volume 903

fraction dependance of Ds(Φ), because it can be reproduced by Brownian 904

dynamics simulations of protein without hydrodynamic interactions. 905

The time-of-flight spectra were measured on D2O-exchanged solutions (in order 906

to reduce the contribution of the solvent) in the wave vector range Q = 0.5 Å
−1

907

to Q = 1.6 Å
−1

for different temperatures [76]. The analysis was similar to the one 908

developed previously for protein solutions [77] in order to separate the contributions 909

from Brownian diffusion and internal motions. The resolution of the spectrometer 910

was set to a minimum of 41μev and reaches more than 60μev (Full-Width Half 911

Maximum) at high angles. The line width of the Brownian diffusion contribution 912

follows a characteristic Q2 dependence at intermediate wave vectors but seems to 913

saturate to a plateau around 4μev for Q2 ≤ 0.75 Å
−2

. At high wave vectors, the 914

authors claim that the curves show an inflection as is predicted theoretically for a 915

jump diffusion models [78] (figure [76]). 916

The diffusion coefficient extracted from the Q2 regime is similar to the one 917

measured at infinite dilution Do, by DLS and by macroscopic methods [56]. 918

Perez et al. [77] estimated, in a different way to that described above, the 919

contribution of rotational Brownian motions to the apparent diffusion coefficient in 920

low concentration protein solutions measured by incoherent scattering. They used 921

numerical integration of the Sears calculation for the contribution to the dynamical 922

structure factor of the rotational diffusion of protons on a sphere [79, 80]. They 923

concluded that rotational diffusion leads to an apparent increase of the translational 924

diffusion coefficient and that Ds � Dapp/1.27. This calculation is valid for low 925

protein concentration when the Stokes–Einstein laws occur for both translational 926

and rotational Brownian diffusion, and reads for a sphere: 927

Do =
kBT

6πηRH
(8.26)

Dr =
kBT

8πηR3
H

(8.27)
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One should notice that the dimensions of both diffusion coefficients is not the 928

same since 〈r2〉= 6Dst, whereas 〈δθ 2〉= 4Drt. Generally for diffusion in solution 929

Ds is given in cm2.s
−1

and Dr in s−1. 930

The application to high concentration solutions is not straightforward because 931

in general the Stokes–Einstein relations break down at high concentrations. For 932

example in red blood cells the rotational diffusion coefficient is reduced by a factor 933

of 2 [70], whereas the long-range translational one decreases by a factor of 7 [3]. 934

The two type of motions do not experience the same influence of protein–protein 935

interactions. In the chapter [76] the same procedure was applied to the short-time 936

diffusion coefficient which is theoretically reduced (Ds
s � 0.56Do) by as much as 937

the rotational diffusion time, although it is closer to 0.34 when including the water 938

hydration shell in the computation of the hydrodynamic volume. 939

The plateau at small wave vectors and the apparent saturation at high Q have 940

been interpreted as a confinement due to the neighbouring molecules and a jump 941

diffusion mechanism. The plateau at small wave vectors would mean that up to a 942

certain distance the protein is freely diffusing with a coefficient DS
s , then would be 943

confined for a certain time, and after a time higher than the interaction time would 944

diffuse over long range but with a decreased diffusion coefficient DL
s . In terms of 945

intermediate scattering function, I(Q,t), this would lead to a two time decay function 946

with a plateau corresponding to the EISF of the protein’s centre of mass. In fact, to 947

get such a function the two characteristic times should be clearly time separated 948

(more than one to two orders of magnitude), which is clearly not the case because 949

the short- and long-time diffusion coefficients differ only by a factor from 2 to 3 at 950

this concentration. Second, the full decay of I(Q,t) was measured by NSE [3] and did 951

not show such a behaviour. The jump diffusion model assumes that the jumping time 952

can be neglected with respect to the residence time; the authors calculate both times 953

as τr � 280 ps for the residence time and τr � 50 ps. In fact, the picture is certainly 954

closer to the traditional I(Q,t) for colloidal suspension at this volume fraction, a 955

stretched decay function, the short time diffusion coefficient being obtained from the 956

first cumulant analysis of the function, whereas the full decay occur with the long- 957

time diffusion coefficient. Measuring such complicated decay functions is easier 958

in the time domain, the convolution by the resolution function in the energy range 959

could lead to erroneous conclusions. 960

8.3.4.5 Coupling of Internal and Diffusive Motions 961

Recently, a method was developed that allows to study the protein domain dynamics 962

by an analysis of the departure from the DQ2 law that is generally observed 963

when only translational motions contribute to the signal [81, 82]. The method is 964

not straightforward and involves sophisticated data treatments, since the effect 965

of structure factor, hydrodynamic factor and rotational motions, must first be 966

eliminated from the measured signal (i.e. the apparent diffusion coefficient Deff(Q)), 967

although the calculation is simplified by the low concentrations of protein in 968

solution. 969
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In [82], the authors studied the interdomain motion in Alcohol dehydrogenase 970

(ADH). From the effective diffusion coefficient Deff(Q), a single tetramer effec- 971

tive diffusion coefficient is deduced using the classical Ackerson formula [39]: 972

Do
eff(Q) = Deff(Q)∗S(Q)/H(Q). The prime reason for the Q modulation Do

eff(Q) is 973

the rotational Brownian diffusion of the aspherical tetramer, which can be calculated 974

using the computer code HYDROPRO [83]. Finally the difference between the 975

calculated and the measured single effective diffusion coefficient ΔDo
eff(Q) is 976

compared with the non trivial lower frequency mode normal calculation and some 977

motions prevailing can be identified (see figure do we insert a figure of prl 101 978

138102?). 979

8.3.5 Conclusion 980

Dynamics are fundamental for proteins to achieve their functions. Stochastic 981

processes, driven by Brownian noise are of primary importance from a molecular 982

level, acting as plasticizers, up to the cell where their unbalanced effects lead 983

to transport and protein motions. These processes span from the picoseconds, as 984

for example, water diffusion or small group internal motions, up to long time 985

large domain fluctuations, associated to functions and protein diffusion. Neutron 986

scattering is a valuable tool for the investigation of the dynamics of proteins 987

and hence the correlation between these motions and protein function. Internal 988

and global motions can be separated by appropriate sample choice (for example 989

hydrated powder to study internal dynamics without translational diffusion) or 990

spectrometer configurations. A general rule is to extend the energy (or time) range 991

of investigation as far as possible by combining different types of spectrometer. 992

Inelastic or quasielastic, neutron scattering can span over 7 or 8 orders of magnitude 993

in time. A particular difficulty is to combine measurements in the time domain, as 994

is the case with neutron spin-echo, with broader bandwidth measurements in the 995

energy domain (Time-of-flight, backscattering). The transformation from energy 996

(h̄ω) to the time domain is not straightforward and needs a careful account of 997

the h̄ω − Q windows of the spectrometer as well as their resolution shapes or 998

even coherent to incoherent ratios. It is sometimes interesting if not necessary 999

to refine models to spectra obtained with different spectrometer configurations or 1000

even different types of spectrometer. Using the refined parameters obtained at low 1001

resolution as input for the refinements of the high resolution and so on. Such 1002

procedure has the advantage of allowing the test of models over a wide range of 1003

wave vector and energy transfer. In any case, strategies must be developed to study 1004

a specific type of motion over the entire domain it spans and eventually to study the 1005

coupling with other motions. 1006
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