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No case against scattering theory
Joachim Wuttkea,1

In a series of papers, Frauenfelder et al. (1–3) propose
a radical reinterpretation of incoherent neutron scat-
tering by complex systems, specifically by protein
hydration water, drawing into doubt the “currently
accepted model, used for >50 y” (3). Under this model
they subsume not only assumptions about the scatter-
ing target (sample) but also the theory that connects
sample and scattering signal. Effectively, they attack
the insight (4) that the dynamic structure factor Sðq,ωÞ
(which they incorrectly call “the scattering intensity”)
abstracts from scattering kinematics and depends only
on nuclear position operators acting on the sample.
They claim that the established theory cannot account
for the q dependence of elastic incoherent neutron
scattering from isotropic samples. As a remedy, they
suggest fits that account ad hoc for the recoil of the
sample and the transit time of the neutron.

Frauenfelder et al. overlook that the isotropy of n-p
scattering is broken by the setup of a scattering exper-
iment: incoming beam direction and detector location
define the scattering vector q. Through Sðq,ωÞ, the
measured cross-section depends on q, or q for iso-
tropic samples. The non-Gaussianity of Sðq, 0Þ is long
known (5) and can have various reasons (6). Faulty
Gaussian extrapolations Sðq→ 0, 0Þ< 1 do not disprove
scattering theory.

Recoil is inherent in the accepted scattering theory
[see ref. 7 for a particularly clear exposition] since
Sðq,ωÞ only involves transition probabilities that

change the sample momentum by −Zq. The recoil
energy is not linear in q, as posited in ref. 3, but qua-
dratic. It is implicitly contained in Sðq,ωÞ, clearly ap-
pears in the limiting cases of an unbound scatterer or
of large q (see, e.g., appendix G in ref. 8), and gives
rise to a distinct factor when Sðq,ωÞ is approximated
for a classical system (9).

To account for transit times, Frauenfelder et al.
request that neutrons be described as de Broglie wave
packets (3). This is not explicitly done in standard texts
because incident and scattered wave packet “share
absolutely the same time dependence” (10). There
are no cross terms: the scattering intensity, given as
the squared modulus of a superposition of wave am-
plitudes turns out to be the sum of squared moduli of
monochromatic wave amplitudes. Therefore, the
established practice of accounting for finite energy
resolution at the level of scattering intensities, not of
wave functions, is perfectly adequate.

Thus, there is nothing wrong with the accepted
scattering theory. The “woes” of ref. 3 are unfounded.
The proposed heuristic injection of recoil and transit
time only wouldmake Sðq,ωÞ inconsistent. With all this,
nothing is said about the physical idea that quasielastic
spectra might be explained by protein substate fluctu-
ations. To make this idea verifiable, it needs to be cast
into amathematical model that yields Sðq,ωÞwithin the
established correlation function formalism (4), without
reversing scattering theory.
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